
Analysis of Heat Recovery Techniques Applied to a Xylene Production
Plant

Olivia Kuebler, Adrian Marusic, Luke Oluoch, and Jonathan White

November 19, 2018

Abstract

The production of xylene (an important petrochemical in a variety of industries) has been steadily increasing
over the past few years. Due to this, maximizing heat recovery in large scale xylene production facilities could have
significant economic benefits. After analyzing the system using pinch analysis, the Qhmin, Qcmin and Tpinch values
of the pilot plant analyzed are 2855.987 KW, 2824.387 KW and 254.3◦C when ∆ Tmin = 10◦C. After integrating
the network, the savings of doing so would prove to be greatly beneficial to both the company running the process as
well as for the environment. By redirecting the energy appropriately, the yearly operational costs and carbon dioxide
emissions can be reduced significantly.

The heat from the streams can also be utilized to run a Carnot engine and produce work that can be used to
run other processes. Using carbon dioxide as the working fluid around supercritical conditions, an engine can be used
to replace 1521.768 kW that would otherwise be supplied by a cooler to produce 225.746 Joules of work per cycle
of the piston cylinder system. Carbon dioxide also proved to be the most appropriate supercritical working fluid for
the network as compared to ethane, methane and water. Another process of heat recovery is steam raising, where
an independent cold stream of water enters the process and absorbs as much heat as possible to become steam by
maximizing the incoming flow rate through an iterative process carried out in Python. Using this process, we can
calculate the theoretical value taken out of the system to be 27851 kW. Lastly, the developed networks from each of
the different sections were analyzed by eigenvector centrality. Eigenvector centrality is a display of the connections
between parts of the network and leads to conclusions of the dependence of the network on certain portions on a scale
of 0 to 1. In each of the networks, there are a few important streams that have numerous connections and each of the
heat exchanger areas calculated in order to analyze feasibility and vulnerabilities within the system.

Contents
1 Introduction 1

2 Energy Analysis 1

3 Environmental Analysis 4

4 Steam Raising 4
i Integrating Steam Raising into the Heat Exchange Network . 6

5 Carnot Cycle 6
i Carnot Cycle Construction . 6
ii Numerical and Analytical Analysis . 8
iii Carnot Engine Specifications . 8
iv Supercritical Working Fluid Comparison . 9
v Supercritical Working Fluid Integrations . 10

6 Eigenvector Centrality 11
i Original Network . 11
ii Steam Raising Network . 13
iii Heat Exchanger Energy/Area Analysis . 14

iii.1 Original Network . 14
iii.2 Steam Raising Network . 14

7 Conclusion 15

8 Bibliography 16

9 Appendix 17
i Original Network Flowsheet . 17
ii Network Flowsheet with Carnot Engine Integrate . 18
iii Steam Raised Network Flowsheet . 19
iv Supercritical Water Carnot Cycle . 20
v Supercritical Methane Carnot Cycle . 21
vi Supercritical Ethane Carnot Cycle . 22
vii Steam Raising Code . 22
viii Table of Steam Raising Variables . 26
ix Supercritical CO2 Carnot Cycle Code . 26
x Supercritical Methane Carnot Cycle Code . 31
xi Supercritical Ethane Carnot Cycle Code . 35
xii Supercritical Water Carnot Cycle Code . 39
xiii Pinch Calculations at Tmin of 10 degrees C Code . 43
xiv Pinch Calculations at Tmin of 20 degrees C Code . 47
xv Cost Analysis Code . 52
xvi Eigenvector Centrality for Original Network Code . 59
xvii Pinch Calculations for Steam Raising Code . 64
xviii Eigenvector Centrality for Steam Raising Network Code . 68

0

CHE 273 Project • November 19, 2018

1. Introduction

Xylene is a volatile hydrocarbon generated in many chemical plants as a product of the catalytic disproportionation of
toluene. This reaction will yield ortho(o), para(p) and meta(m) isomers of xylene. In general, xylene has a wide variety
of uses such as a solvent in printing, rubber and leather industries and can also be used in cleaning agents, paint thinners
and varnishes. Most p-xylene is processed into into polyethylene terephthalate (PET), a common plastic used in many
industries. One example of PET’s usage is found in plastic water bottles and other plastic food containers. P-xylene is
also used in the manufacture of purified terephthalic acid (PTA), a basic petrochemical used in the textile industry
for the production of polyester[1]. Production of this chemical has been growing for the past 15 years at a steady
pace[12]. In Asia specifically, polyester producers have gotten into the purified terephthalic acid business to increase cost
competitiveness and as a result over 70% of global market of xylene is in Asia. In a recent news article from Houston
Business Journal, ExxonMobil Chemical Co.’s Singapore affiliate will buy one of the world’s largest aromatics plants
from Jurong Aromatics Corporation Pte Ltd.[9].This will allow Exxon to increase their production of paraxylene by 1.4
million additional tonnes per year. President of ExxonMobil Chemical claims, “Our growth in Singapore is driven by the
expected increase in global demand for chemical products over the next decade of nearly 45%, or about 4% per year,
which is a faster pace than energy demand and economic growth[9]. This data shows there will be a constant increase in
the global production of xylene, specifically in Asia, and more plants will need to be built to satisfy the demand. This
information gives context to the project as the plants that will be implemented are similar to the plant being analyzed,
meaning the energy optimization techniques applied in this paper could be applied to actual systems in the near future.

2. Energy Analysis

The pilot plant for this process is a scaled down model for purification of benzene and xylenes. Through the process
there are hot and cold streams, reboilers, and condensers that are used to produce the desired product on a large scale.
While an arrangement of these streams and distillation columns work, it is not the optimal solution and has a lot of
wasted energy and heat. By properly integrating the system, the wasted heat can be minimized so that the system can
be optimized for the process development.

Proper heat exchange and column integration within the network begins with identifying and labeling the hot and
cold streams available. At the surface of heat exchange networks, connections between hot and cold streams can be
made so the energy of the hot streams can be used to heat the cold streams to their final temperatures. If there is any
excess/deficit of heat such that a stream does not reach its target temperature, heaters/coolers can be applied to the
system that require outside heat to power them.

For the entirety of process, it is highly preferred that a process be at steady state so that it can continually run.
For that to be feasible, however, the mass and energy of running the production has to be balanced such that mass or
energy in minus mass or energy out is equal to zero. For the mass balance at each section of the process can be balanced
by equation 1 to show that there is no accumulation of any of the chemicals.

∂mi

∂t
= 0 (1)

For the energy balance, the enthalpies of each of the sections of the stream need to be found such that it satisfies
equation 2 that states that the difference between the beginning and ending enthalpies are equivalent to the enthalpy of
a heat exchanger that transfers energy.

H1 −H2 = Hexchanger (2)

When applied to each section of the network given, the mass and energy balances out at all parts allowing for this
system to be optimized by pinch analysis.

Pinch analysis is the breakdown of understanding how to properly integrate a network based the temperature
differences of hot and cold streams. The integration begins around the pinch temperature which is determined by the
point where the hot and cold streams are exactly separated by Tmin when compared graphically, meaning that there is
no available heat for transfer at that exact point. The pinch temperature will decide how the network will be divided
and provide a basis for establishing the connections between the streams [6].

The process that was integrated in this paper is shown in Appendix i.
The energy requirements of the pilot system at a Tmin of 10◦ after integration are Qh = 2856 kW, Qc = 2824 kW,

and Tpinch = 254.3◦ (Appendix xiii). If Tmin is set to 20◦, Qh = 2880.4 kW, Qc = 2848.8 kW, and Tpinch = 259.3◦
(Appendix xiv). For the full scale plant, each of these Qs are multiplied by 10 to account for the difference in scale. The
cost of the full scale plant can be calculated using Equations 3, 4, and 5.

CapitalCost =
12.5 ∗ 106 ∗◦ C ∗ $

.05Tmin
(3)

OperationCosts =
$.15Qht

kW ∗ hr
(4)

1

CHE 273 Project • November 19, 2018

TotalCost =
12.5 ∗ 106 ∗ CC ∗ $

.05Tmin
+

$.15Qht

kW ∗ hr
(5)

The Qh versus Tmin is shown in Figure 1 for Tmin in the range of 10◦ to 40◦.

Figure 1: ∆Tmin vs Tmin

The spike in Qh is due to a change in the pinch temperature. We can see that Qh generally remains lowest below a
Tmin of 30◦.

Capital cost versus Tmin is shown in Figure 2 for Tmin of 10-40◦.

Figure 2: ∆Tmin vs Capitol Cost

This shows that capital cost declines with increasing Tmin.
Operation cost versus Tmin for a period of 1 year is shown in Figure 3 over the same Tmin range.

2

CHE 273 Project • November 19, 2018

Figure 3: ∆Tmin vs Operational Cost

This graph follows a similar trend to Qh, since operation cost is a variable of Qh and time. The ideal Tmin to
minimize operating costs for the long term is 10◦.

A 3D graph of Cost vs. Time vs. Tmin is shown in Figure 4.

Figure 4: 3D Graph of Cost vs. Time vs. Tmin

This shows that while the initial cost is controlled by the capital cost, the final cost of the system will be mostly be
controlled by the operating costs since these are a function of time. Because of this, depending on the number of years
the plant operates, the ideal ∆Tmin will change over time.

Figure 5 shows the total cost for one year versus Tmin.

Figure 5: Costs After One Year

3

CHE 273 Project • November 19, 2018

After 1 year of running the plant, we find that the lowest cost of the system would be $41,870,000, at a Tmin of
20.384◦.

Due to observations above, a Tmin of 10◦ will eventually become the most viable option at some time “t”. This
t was calculated in Appendix xv, along with the graphs above. From this, it can be seen that the optimal Tmin will
become 10◦ after 634 days (or 2 years and 34 days if running the system 300 days a year) and beyond. This means that
all calculations in the following paper are most economically viable if the system runs for at least 634 days, since all
following calculations assume 10◦.

3. Environmental Analysis

By utilizing the heat exchange network that was assembled in section 2, there are clear advantages to being more efficient
with the energy available. Instead of underutilizing the available energy in the system, by integrating the pinch analysis
there are not only cost savings involved which is beneficial to the company but the reduced impact on the environment
is helpful on a global scale.

To be able to do the calculations of how much is saved by integrating, there were conversion values about the
pricing and energy relations of coal. The information used to find the information was:

1. Coal’s energy density is 6.67 kWh/kg.

2. Coal power plants are approximately 30% efficient.

3. The cost of coal is approximately $60.00/1000 kg coal.

4. 1 kg of coal produces approximately 1.83 kg carbon dioxide.

5. The plant runs 24 hours a day for 300 days a year.

The amount of heat that is required by the integrated network is the sum of the required heat to warm the cold
streams as well as the heat necessary to run the reboilers of that system. With the integrated network, the heat needed
is simply the Qh value that is output after integration. Both of those values for heat apply to a full scale plant that is
ten times larger than the pilot plant listed in the assignment details. The savings are listed in Table 1.

Table 1: Savings Made by Integration

Unintegrated Plant Design Integrated Plant Design Savings
Total Heat Needed (kW) 42,678.00 28,559.87 14,118.13

kWh/year 307,281,600.00 205,631,078.40 101,650,521.60
Coal Needed (kg) 153,564,017.99 102,764,157.12 50,799,860.87

Cost of Coal $9,213,841.08 $6,165,849.43 $3,047991.65
Carbon Emissions (kg) 281,022,152.92 188,058,407.53 92,963,745.39

4. Steam Raising

In most factories, a significant portion of heat put into large scale processes is output as waste due to the inability of
the plant to utilize that heat. Finding a way to use this waste heat would be of financial interest to any large scale
manufacturing plant and pinch analysis, discussed in section 2, explains the methodology and techniques used to analyze
the process system. While it is difficult to reuse low grade heat (< 100◦), high grade heat (>100◦) can be recycled in
the form of steam. This is achieved by transferring heat between existing hot streams and streams of water or steam. In
this situation the water stream is essentially a cooler since it removes heat from the system and therefore the water
stream can replace coolers in the network. Due to the constraints of this system, this process can only be used below the
pinch and in order to determine the constraints of the water stream, the Grand Composite Curve (GCC) of the system
below the pinch can be analyzed in Figure 6.

4

CHE 273 Project • November 19, 2018

Figure 6: Grand Composite Curve Below Pinch

To generate the GCC graph, the interfacial temperatures from the heat cascade must be plotted with their
corresponding enthalpies. By using the endpoints of a line segment and Equation 6, the points between any two endpoints
can be plotted and a complete graph of line segments can be compiled using

T2 − T1
H2 −H1

=
T − T1
H −H1

(6)

where (H1, T1) and (H2, T2) are the end points to any of the GCC line segments and T2−T1

H2−H1
is the slope of every

point between the 2 endpoints. Using the slope, the values along the GCC between the endpoints can be calculated.
This method is also used to calculate the points between each steam raising line. Values for H1, H2, T1, and T2 for each
segment are from the steam raising code in Appendix vii .

The GCC is a graphical representation of the heat cascade analysis, with each temperature associated with a kW
value and shows, graphically, the maximum heat that can be taken from the system. Steam lines are one way to find that
maximum heat. These lines are graphed on the GCC using specific thermodynamic properties of water and steam[4]. By
keeping your steam lines just within the GCC lines, the pinch condition is satisfied while attaining the maximum flow
rate ie. the maximum heat transfer. For this system, water at the inlet is 25◦ (30◦ shifted) and heated to 120◦ (125◦
shifted). Heating the water to 120◦ will evaporate the water to steam and thus all the stages of heating water need to
be considered. The calculations for this require the Equation 7, Equation 8, Equation 9 for the sensible, latent and
superheating stages.

Mw =
Hstart −Hwsat

Cpw(Tsat − Tstart)
(7)

Mw =
HWsat −Hssat

∆Hvap
(8)

Mw =
Hssat

Cps(Tfinal − Tstart)
(9)

These 3 equations give 4 unknowns; Hstart, Hwsat, Hssat and MW. With one degree of freedom, If Hwsat is guessed,
the above 3 equations can be combined into:

Hssat =
CpsHwsat(Tfinal − Tsat)

Hvap+ Cps(Tfinal − Tsat)
(10)

Hstart = Hwsat(1 + Cpw
Tsat − Tstart

∆Hvap
) −Hwsat(CpwCps

Tsat − Tstart
∆Hvap

)(
Tfinal − Tsat

∆Hvap + Cps(Tfinal − Tsat)
) (11)

Mw = (
Hwsat

∆Hvap
)(1 − Cps

Tfinal − Tsat
∆Hvap + Cps(Tfinal − Tsat)

) (12)

By guessing the Hwsat value just outside the GCC of the same temperature, a corresponding flow rate is produced.
This analysis requires an iterative reduction of Hwsat until it is just touching the GCC. Once that is satisfied, look to
make sure the “corner points” (GCC line segment endpoints) are all less than the corresponding GCC enthalpies at the
same temperature. If any of these criteria are not met, Mw will iterate through at a smaller Hwsat changing the shape of
the graph and the value of Mw. Finally, if Hssat is less then or equal to 0, no solution can be found. This process can be
verified using computational tools like Microsoft Excel or Python below. Using the GCC data and the initial conditions,
the full scale plant can be calculated to have a maximum flow rate of 10.67 Kg/s. The is the maximum heat taken out
of the system is equal to Hstart, 27851 kW. All of this computation was done by a Python code in Appendix vii

5

CHE 273 Project • November 19, 2018

Figure 7: From right to left: (Hstart, Tstart), (HWsat, Tsat), (Hssat, Tsat), (0, TFinal)

i. Integrating Steam Raising into the Heat Exchange Network
A new heat exchanger network was designed for the purpose of utilizing steam raising to get as much heat as possible
out of the heat exchange network. This network will have multiple pinches due to the fact that no energy will be left in
the system at the original pinch, and no energy will be available at two other points due to the steam raising process
taking all available energy. These points are at shifted temperatures of 105◦C and 45◦C, in addition to the existing
pinch at 254.3◦C. These pinches were calculated through the python pinch analysis code in Appendix xvii. Due to the
existence of three pinches, the network must be changed a great deal to adjust for steam raising and is pictured in
Appendix iii. Realistically, the ideal Qc and Qh calculated from the code in Appendix xvii cannot be reached through
the system. The actual Qc the network can support in the full scale plant is is 660.39 kW, versus the calculated 441.77
kW. In the same vein, the Qh that the network can actually support is 28,780 kW, versus the calculated 28,560 kW. Due
to this, about 220 kW needs to be added to the system that will be removed by coolers later. However, steam raising
uses 27,585 kW that would otherwise be unused, so this small change to Qc and Qh is well worth it because so much
extra energy that would be wasted by the system is now being used. This steam could then be used to power a turbine
if the plant wanted to use this energy to generate electrical energy.

5. Carnot Cycle

i. Carnot Cycle Construction
Another method to utilize the waste heat is to convert to work using the Carnot Engine. The Carnot engine is a basic
thermodynamic model of an engine that displays the change in pressure and volume between two specific isotherms. A
piston cylinder system within the engine will expand and contract based on the limits that are created by the isotherms.
The net result of the movement of the pistons produce work that can be used to move whatever is required by the
system.

Figure 8: The Carnot Cycle of Supercritical Carbon Dioxide

To develop this system, the amount of work the engine produces depends on the fluid that is used to move the
piston. For this engine, carbon dioxide near its critical conditions will be used. By staying near the super critical
conditions, pressure becomes a weak function of volume and thus the isotherms become flatter. The flatter the isotherms,

6

CHE 273 Project • November 19, 2018

the greater the difference between them, which increases the potential work that can be extracted from the engine. The
critical conditions dictate how some of the parameters of this analysis were established to allow for other parameters of
the engine to be changed effecting the outcome of work.

In order to build the Carnot cycle, the volume range of any curve needs to be established. To stay around the
critical conditions, the critical volume of the fluid can be calculated by Equation 13 [8], after being given critical pressure
and temperature. By initially being given the critical pressure, Pc, and the critical temperature, Tc.

Vc =
3RTc
8Pc

(13)

Once the critical volume is established, the range of the volume can be determined by centering the range over the
critical volume. The length of the range is determined by the compression ratio of the fluid. The compression ratio
is the relation between the maximum and minimum volumes of the fluid represented by V1 and V2, respectively. The
compression ratio was set at 2 for the purposes of this project to allow for there to be a reasonable amount of movement
of the fluid when the heat is added to the engine.

The next two parameters established were the isotherms that are used to create the heat difference that moves the
piston. The lower isotherm was set as the critical temperature of carbon dioxide to ensure that the fluid can remain,
at minimum, near the critical conditions. The upper isotherm was determined by selecting a unit that was attached
to a hot stream and had a temperature that was reasonably higher than Tc. A cooler on stream 7 had an outgoing
temperature of 353.13 K (80◦C) which produced a sizeable amount of work. ix

Once the volume range and the temperatures were established, the curves of the isotherms can be created using
Equation 14 [8]:

Pc =
RTc
Vc − b

− a

V 2
c

(14)

Where Vc is the critical volume, T is the temp of the isotherm and constants a and b are constants that apply to
the Van der Waals equation and can be calculated from Equation 15 [8] and Equation 16 [8]:

a =
27R2T 2

c

64Pc
(15)

b =
RTc
8Pc

(16)

After the isotherms are created, the adiabatic curves on the left and right sides of the Carnot cycle need to be
established through Equation 17 [8]:

VB − b = (V2 − b)
Tc
Th

Cv
R

(17)

Where b is the Van der Waal’s constant calculated prior, Tc is the the lower isotherm, R is the gas constant, Vb
is the volume associated with the upper right corner of the Carnot cycle, and Cv is the heat capacity of the fluid at
different temperatures. The range of volumes is then found by iterating Th in Equation 17 from Tc to Th. The range of
volumes can then be used to calculate a range of pressures using Equation 14 and that will connect the two isotherms by
the adiabat.

The left adiabat can be found in a similar way to the right adiabatic curve except that Va is used instead of Vb, V1
is used instead of V2, and the Tc/Th is inverted to Th/Tc and Tc is varied instead of Th.

Cv can be calculated by Equation 18 [8]:

Cv =
R(A+BT + CT 2 +DT−2)

γ
(18)

The A, B, C, D and gamma are constants that are specific to the fluid used in your system. The values to each of
those constants can be found in Table 2 [10]:

Table 2: A,B, C, D and gamma constants for CO2

CO2
A 5.457
B 1.045*10-3

C 0
D -1.157*105

γ 1.29

The Cv value that was used was an average of all the Cv’s found iterating temperature from Tc to Th. The range
of the Cv temperatures is not large and therefore taking an average is an accurate way to represent the Cv’s for this
temperature range.

7

CHE 273 Project • November 19, 2018

After all four curves have been established, the Carnot cycle is complete and the work associated by expanding
and contracting the piston in the engine can, numerically, be found. The work associated with one cycle of the Carnot
engine is the area of the shape formed by connecting the curves. ix

ii. Numerical and Analytical Analysis
To run this engine however, there needs to be an amount of heat that is introduced to create isothermal expansion, and
can be taken from the initial network design for our plant that is Figure i. The temperature of the cooler utilized needs
to have a Th value that is large enough to produce an optimal amount of work, but also cannot be too large as the work
output becomes negative at some point.x With both of these considerations in mind, cooler 5 from our network fits this
criteria for not being excessively large nor being to small to create very little work.

These amounts of work and heat that have been calculated from the network and plot, can also be done through
equations, analytically. In Equation 19 [8] and Equation 20 [8], work and QH can be found based on some of the chosen
parameters of our calculations.

QH =

∫ VB

V1

RTh
V − b

dv = RThln
VB − b

V1 − b
(19)

W = Qh(1 +
Tc
TH

) (20)

The implementation of using these equations allow for a good comparison of how much work that can be taken out
of the system if the numerical analysis of the system and graph were correct.

Lastly, the efficiency of a Carnot engine is a simple calculation that compares the utilized isotherms with which the
system runs. The equation for finding the efficiency is seen as Equation 21 [8]:

η = 1 − Tc
Th

(21)

iii. Carnot Engine Specifications
To determine the rate at which the system has to complete a cycle, an accurate relationship between the work and heat
needs to be found. The heat is being inputted to the system at the rate of J/sec and the work that is extracted occurs
in J/cycle*mol. The frequency of how fast the piston moves is then found through Equation 22.

Hz =
η ∗Qh

W ∗mol
(22)

The amount of moles is arbitrarily assigned to allow for an appropriate amount of cycles/sec to occur. In this
regard, there cannot be too few moles assigned to the piston since that will cause for a preposterous amount of cycles
needed to intake all of the heat. Oppositely, too many moles will call for too large of a system that will be unnecessarily
expensive and large that the pistons may reach a point of underutilization of what could be a more efficient process.

The size of the engine can be calculated therefore based on the number of moles selected by the system and the
maximum volume needed to run the system V2. The calculations for volume, pressure and work have been on a “per
mole” bases thus far and therefore the volume of the engine needed is found through Equation 23.

V = mol ∗ V2 (23)

The size of the engine is therefore based on the size of a one piston-cylinder system in an ideal setting. For
the purposes of applying it to being able to handle the capacity of an entire plant however, there needs to be some
consideration on how to better balance the capacity of absorbing heat and converting it to work.

To improve the reality of getting this engine to appropriately handle the impact of the incoming heat, dispersing
the work amongst multiple cylinders better improves the engine and its ability to work. Instead of just working with one
piston, the engine could be rearranged to have 6 cylinders in flat arrangement connected to a crankshaft that in turn
does the work to run a process. By doing this, there is less of an impact on any one cylinder to have to produce all of
the work and improve the longevity of the internal pieces to that engine. On top of this, the amount of supercritical
fluid gets divided amongst the cylinders making it easier to maintain, and the volumes of each cylinder still surround the
critical volumes to keep it in that state.

Table 3 displays the impact on one cylinder in both a one cylinder engine and 6 cylinder engine using 100 moles of
CO2, the work found numerically from our system and the Qh that is being inputted into the Carnot engine from our
heat exchange network.

Table 3: Comparisons of Numerical and Analytical values

1 Cylinder Engine 6 Cylinder Engine
Frequency (Hz) 23.51 3.92

Size of Cylinder (L) 6.852 1.142

8

CHE 273 Project • November 19, 2018

The Carnot cycle that applies to our network can finally be integrated into the system as seen in Appendix ii to use
some of the heat that is available.

By adding this engine cycle to the system to the system to replace a cooler, not only is the engine producing
work that can be used to run another process but there is a cost savings that is associated with no longer needing
to run a cooler to reduce the temperature of the hot stream. In this case, assuming that coal is used to power the
electricity needed, the work produced by the engine saves $45,631.50 per year and no longer needing to run the cooler
saves $328,537.64 per year for a total savings of $374,169.14 per year.

iv. Supercritical Working Fluid Comparison
The engine that was calculated for in the previous tables utilized supercritical CO2 for the working fluid within the
piston cylinder system. The calculations therefore, were based around the characteristics of the CO2 such as the critical
volume determining the range of the volumes the piston would move or the critical temperature acting as the lower
isotherm of the PV diagram.

By varying the fluid within the engine, different parameters may be needed to better absorb the heat from the
network and convert it to work, while still remaining around the supercritical conditions that benefit work production.
Common supercritical fluids that can be used in this situation are methane, ethane and water. By comparing their
properties to those of CO2 and how these fluids could possibly apply to our network, an optimal fluid can be found that
suits the network better than CO2 would.

Each of the three other fluids have critical conditions that might lead to a better solution for this network. Methane
has an extremely low critical temperature (-80◦C) and thus using an isotherm of room temperature would create the
large difference between the two curves producing work. Ethane has a critical temperature that is very close to CO2
(305.3K for Ethane, 304.1 for CO2) but has a critical pressure that is almost half of that of CO2. The resulting difference
in critical volume based on critical temperature and pressure may be able to produce a more efficient Carnot engine.
Lastly, water has a high critical temperature which can be applied to few portions of the available network, but exploring
greater critical temperatures could also lead to a more efficient Carnot engine.

Table 4 [10] shows a comparison of the critical parameters of the four common supercritical fluids for quick
comparison of differences.

Table 4: Critical Parameters for Selected Fluids

CO2 Methane Ethane Water
Tc (K) 304.1 190.6 305.3 647.1
Pc (bar) 73.80 45.99 48.72 220.55

Vc (L/mol) 0.128 0.129 0.195 0.0915

Tc and Pc are from accepted literature and Vc is calculated via Equation 13.
The other individual parameter that needs to be established for each of the fluids is their heat capacity coefficients.

The coefficients can be used to calculate a heat capacity that applies to finding a volume range. The coefficients for CO2
have been listed prior in Table 2, and the coefficients for the other supercritical fluids is listed in Table 5 [10].

Table 5: Coefficients for Selected Fluids

Methane Ethane Water
A 1.702 1.131 3.470

B 9.081*10
-3

19.225*10
-3

1.450*10
-3

C -2.164*10 -6 -5.561*10 -6 0
D 0 0 0.121*10 5
γ 1.31 1.19 1.33

For the purposes of comparison, the critical parameters and the heat capacity constants are the only parameters
that will change about the fluids. In order to have a logical argument for discussion on the best critical fluid for our
scenario it is fair to keep consistency for outside conditions, beyond that of the fluid, to best see how the fluids compare.
The constants that will remain the same between the fluids are the way each of the functions and results are calculated,
the compression ratio, the critical volume being exactly between V1 and V2, and the number of moles that the engine
will utilize to complete the Carnot cycle.

The first comparison of the fluids that can be looked at is how well each fluid performs under the same difference in
temperature difference and same Qh inlet. By comparing the critical parameters to each other, inferences can be made
on which fluids may work best for the network given.

Each of the critical temperatures of the fluids will be used as Tc and Th will be determined using the same
temperature difference as calculated earlier when a CO2 engine was integrated into the network which is 49.05 K.
The reason that the temperature difference is remaining same and not the temperatures themselves is that by using
different temperatures other than the critical temperatures for each fluid, the fluid is not going to be around supercritical

9

CHE 273 Project • November 19, 2018

conditions and therefore the information gathered from that approximation would not make conclusions about the fluid
as a supercritical fluid. The same Qh is being applied to each of the fluids to accurately compare the frequency of cycles
needed to produce the calculated work.

The results of this comparison is listed in Table 6. Th for each fluid was 49.05K higher than Tc, Qh is 1,521,768
Watts, the number of moles in each system is 40 moles of each fluid. CO2 results, although previously listed, were added
to Table 4 for comparative reasons.

Table 6: Calculated Values for Selected Fluids

Carbon Dioxide Methane Ethane Water
Tc (K) 304.1 190.6 305.3 647.1
Th (K) 353.1 239.65 354.35 696.15

Efficiency 13.9% 20.5% 13.8% 7.05%
Qh (J/s) 1,521,768 1,521,768 1,521,768 1,521,768

Work (J/cycle*mol) 224.749 194.590 97.464 347.872
Qc (J/s) 1,310,405 1,210,302 1,311,121 1,414,546
Hz (1/s) 23.51 40.02 54.03 7.71

Engine Size (L) 6.852 6.891 10.42 4.88

Methane as compared to carbon dioxide at these conditions proves to simply not match up in quality of output in
most categories of comparison. Despite the methane based engine being more efficient, the work output with the same
temperature difference as carbon dioxide is considerably smaller due to the fact that lower overall temps causes smaller
calculated area outputs. This reduction in work, causes a higher required frequency which creates more wear on the
engine over time.

Ethane, despite having similar isotherms to carbon dioxide, also produces results that are not as preferable as an
engine based on carbon dioxide. The issue mainly stems from the critical volume of ethane being significantly greater
than that of carbon dioxide’s. The larger the critical volume, the greater the size of the engine, however the isotherms
stretch the Carnot graph and ultimately produce less work. This causes required frequency to increase which is less
desirable than the original design.

Water, at its high temperatures, produces results that rival the results of carbon dioxide in numerous ways. Most
noticeably, the work that is produced by this cycle is greater than carbon dioxide’s because the upper isotherm extends
to such high temperatures producing a greater area of the Carnot plot. The increased amount of work, decreases the
required frequency and the lower critical volume produces a smaller engine size overall. The results of the supercritical
water engine make it possible that if it can be successfully integrated into the heat exchange network, it could be more
profitable in the long run than the given carbon dioxide engine.

v. Supercritical Working Fluid Integrations
After reviewing the comparative results based on the already integrated supercritical carbon dioxide engine, the engines
based on the other supercritical fluids can also be attempted to be integrated into the network. If they can be
appropriately integrated to the network, the outputs need to be considered to see if it is profitable to use that type of
engine over the given carbon dioxide.

Any attempts to integrate an engine type into the network will first be based on if it is even possible to work it into
the system based on the critical temperatures, and then placed on the diagram to find the optimal location for it.

The constants that are kept in this comparison include the calculations, the compression ratio, the critical volume
of the fluid being exactly between V1 and V2, and the number of moles of the system which will be set to 40 moles.
The results of this comparison is listed in Table 7. CO2 results, although previously listed, were added to Table 4 for
comparative reasons. (App.ix through xii)

Table 7: Integrated Calculated Values for Selected Fluids

Carbon Dioxide Methane Ethane Water
Tc (K) 304.1 190.6 305.3 647.1
Th (K) 353.1 298.15 353.15 683.15

Effeciency 13.9% 36.1% 13.5% 5.28%
Qh (J/s) 1,521,768 81,000 1,521,768 976,668

Work (J/cycle*mol) 224.749 -175.060 103.317 274.777
Qc (J/s) 1,310,405 51,781.3 1,315,576 925,128.8
Hz (1/s) 23.51 -4.17 49.89 4.69

Engine Size (L) 6.852 6.891 10.42 4.88

For methane, the trouble begins with integrating it into our network by the fact that the critical temperature of
methane is comparatively low (190.6 K, -82.55◦C) and the lowest possible temperature on the network is 20 ◦ C, located

10

CHE 273 Project • November 19, 2018

on Stream 2 in Figure i. For consistency between engines, the lower isotherm will be the critical temperature for each of
the fluids and the upper isotherm will be the temperature of the stream in the network. The result of having such a
dramatic difference in temperature becomes problematic when trying to run a Carnot engine.

Disregarding the energy required to maintain a lower isotherm that is so low in temperature, the calculation method
of finding work is limited by the temperature difference. In this instance, the temperature difference is large enough that
the resulting work is negative (App.v). Needless to say, a Carnot engine that uses methane as a working fluid is not
appropriate, considering the temperatures of the network.

For ethane, due to its similar critical temperature to carbon dioxide, can reasonably be integrated into the system
at the same place as the integrated carbon dioxide Carnot engine. Similar to the results found when the fluids were
compared at similar conditions, the results of using ethane at this section of the network gives inferior results to that of
the carbon dioxide results (App.vi). The greater required size of the engine, higher required frequency, and lower work
output prove that carbon dioxide working fluid is more appropriate than the ethane working fluid for this network.

While methane and ethane did not prove to be properly suited for this network, which was consistent with the
comparison of the fluids, water showed promising results when attempted to be integrated into the system.

If the original network is redesigned and the Carnot engine with water as the working fluid is integrated at stream
two, the calculations can be done to remove heat up until the temperature of the exiting fluid is 410◦C. The results from
that integration produce the results shown in Table 7 which prove to be better than the carbon dioxide based engine.
The work output is increased, the size of the engine decreases, and the frequency decreases. Water is also abundantly
accessible to apply to this system so from a cost standpoint of installing one of these engines, the benefits prove to beat
the benefits of the carbon dioxide based engine.

When integrating the engine utilizing water as its working fluid, the possible energy production is higher than that
of any other fluids tested (App.iv). However, this cannot be integrated into the existing heat exchange network, since the
water engine would only function above the pinch, and there is no energy available for this engine to use above the pinch.

Although none of the other explored fluids could be better applied than the given carbon dioxide based engine, the
comparison of them proved to show interesting insights about when a supercritical fluid is appropriate for a system. In
terms of cost reduction, integrating engines should optimally be done to replace current machinery to create productivity
out of waste heat. It is also important to understand that the critical temperature will determine where the engine can
be possibly integrated, lower critical temperatures apply to colder systems and higher critical temperatures apply to
hotter systems. Lastly, the size of the engine, and the costs associated with it, are determined by the critical volume of
the fluid where lower critical volumes reduce size and therefore there is less fluid needed to make the engine work and
less capital costs for material and installation.

6. Eigenvector Centrality

One method used to look at the interconnectedness of heat exchanger networks is eigenvector centrality. Eigenvector
centrality is a numerical measure from 0 to 1 of how important a node (or in our case, stream) is to the network as
a whole. Eigenvector centrality is more specific than other types of centrality like degree centrality since eigenvector
centrality considers a node more useful if it is connected to other well connected nodes. Additionally, the edges (which
in our case are heat exchanges) can be weighted, meaning that centrality can be calcualted based on how much heat
each stream is transferring.

i. Original Network

Figure 9: The original network designed for the plant was the network above. C1-3 represent condensers, and R1-3 represent
reboilers.

The eigenvector centrality values are as follows:

11

CHE 273 Project • November 19, 2018

Table 8: Original Network

Stream Centrality
1 9.05*10-6

2 1.28*10-5

3 0.180
4 2.03*10-16

5a 2.03*10-16

5b 2.03*10-16

6 2.03*10-16

7 0.454
8 0.383
9 2.03*10-16

Stream Centrality
Condenser 1 2.03*10-16

Condenser 2 2.03*10-16

Condenser 3 0.383
Reboiler 1 0.484
Reboiler 2 0.484
Reboiler 3 9.05*10-6

From these values, reboilers 1 and 2 are the most connected, followed by stream 8 and condenser 3, and then stream
3. Streams 1 and 2, and reboiler 3 are connected in their own less important network, so they have lower centralities,
with stream 2 being the most important of the three. All other streams are unconnected, and therefore very unimportant
in the network, so they are given extremely low centrality values. These values are incredibly small, but still non-zero
since they are still part of the network as a whole, even though they have no connections. From this, reboilers 1 and 2
are most important for our system as a whole when it comes to their general connectedness, meaning that if they fail in
some way, this hurts the rest of the network the most.

The weighted eigenvector centrality based on the amount of heat transfer in each connection is as follows:

Table 9: Original Network Weighted

Stream Centrality
1 0.707
2 0.707
3 8.61*10-6

4 7.61*10-19

5a 7.61*10-19

5b 7.61*10-19

6 7.61*10-19

7 4.84*10-5

8 2.55*10-6

9 7.61*10-19

Stream Centrality
Condenser 1 7.61*10-19

Condenser 2 7.61*10-19

Condenser 3 1.05*10-4

Reboiler 1 2.71*10-5

Reboiler 2 1.07*10-4

Reboiler 3 1.20*10-4

From these, we see that streams 1 and 2 are the most important to our overall network, since they transfer so much
heat (986.8 kW in the pilot plant, 9868 kW in the full scale) between one another. Reboiler 3 is given a high centrality
value since it’s interconnected with these two streams. Reboilers 3 and 2, and condenser 3, followed by streams 7, 3,
then 8 all have middling centrality values since they are transferring a fair amount of heat, and are interconnected with
each other. Finally, all other streams are not connected, giving very low centrality values. From this, we see that if there
are problems with streams 1 and 2, this becomes quickly problematic for the network because of how much heat they
are transferring. However, these failing would really only affect each other, since they are only connected to each other
and reboiler 3. The code used to calculate these values is in Appendix xvi.

Note that everything within this section also applies to the alternate network with the Carnot engine integrates
since the Carnot engine will just be replacing an existing cooler.

12

CHE 273 Project • November 19, 2018

ii. Steam Raising Network

Figure 10: The redesigned network for steam raising is pictured above. C1-3 are condensers, R1-3 are reboilers, W is the water
stream before it is vaporized, S is the steam after being vaporized, and V is the water as it is being vaporized.

The eigenvector centrality values for this network are below.

Table 10: Steam Raised Network

Stream Centrality
1 0.0670
2 0.243
3 0.153
4 0.164
5a 0.164
5b 0.164
6 0.248
7 0.314
8 0.248
9 0.16

Stream Centrality
Condenser 1 2.91*10-19

Condenser 2 0.164
Condenser 3 0.292
Reboiler 1 0.0804
Reboiler 2 0.0804
Reboiler 3 0.0670
Water 0.596
Steam 0.0864

Vaporization 0.303

From this, we see that water is the most connected stream by far. This is largely due to its high CP value. The
vaporization stream also has a high number of connections, due to its high CP value and very high energy requirements
(2400 kW in the pilot plant, and 24000 kW in the full scale). Then, condenser 3 is connected to both of these important
streams (and reboiler 2), so it is next most important stream. The rest of the streams follow this sort of pattern, with
the only notable stream being condenser 1, which has no connections within the network, and as such has a super low
centrality value. This shows us that if the water stream fails, a huge number of streams would be affected by this.

The weighted eigenvector centrality based on the amount of heat transfer in each connection is shown in the table
below.

Table 11: Steam Raised Network Weighted

Stream Centrality
1 0.0257
2 0.0254
3 0.00126
4 4.95*10-7

5a 4.06*10-5

5b 3.67*10-6

6 0.00713
7 0.0607
8 0.00508
9 1.02*10-5

Stream Centrality
Condenser 1 2.66*10-14

Condenser 2 2.99*10-4

Condenser 3 0.683
Reboiler 1 0.0313
Reboiler 2 0.0944
Reboiler 3 4.35*10-6

Water 0.00311
Steam 0.721

Vaporization 0.00125

From this table, it can be seen that the vaporization stream is most important, with condenser 3 relatively close
behind it, and stream 7 behind that. This is due to the vast amounts of heat (for vaporization: 2400 kW in the pilot
plant, and 24000 kW in the full scale, and for condenser 3: 2552.7 kW in the pilot plant, and 25527 kW in the full scale)

13

CHE 273 Project • November 19, 2018

that condenser 3 and the vaporization stream are exchanging. Stream 7 is considered important mostly because of the
streams it exchanges heat with. Stream 7 exchanges heat with the vaporization stream, and two streams which connect
to stream 2, which has our next biggest heat exchange behind condenser 3 and the vaporization stream. What all of this
means is that stream 7, the vaporization stream, and condenser 3 are all important to this network, due to how much
heat they are exchanging, and their connectivity, so if any of these fail in some way, the network will be heavily affected.

iii. Heat Exchanger Energy/Area Analysis
Two ways to measure each heat exchanger’s significance in the overall network are the amount of energy transferred, and
the area of each heat exchanger. It is important to keep each of these in mind, because if important heat exchangers fail
for any reason, this could cause the whole system to stop functioning properly since the processes will not be at the
desired temperatures.This section analyzes which heat exchanger should be monitored the most closely due to this fact.

iii.1 Original Network

In the original network (Appendix i), the heat exchanger energies and areas needed are in Table 12. Numbers in Table
12 are for the full scale plant.

Table 12: Powers and Areas for Original Flowsheet

Heat Exchanger Power (kW) Area (m2)
1 4652.252 1624.3
2 5215.8 1819.3
3 431 20.2

Reboiler 1 and Stream 7 665.04 -
Reboiler 2 and Stream 7 746.54 -
Reboiler 1 and Stream 8 24.0 -
Reboiler 2 and Stream 8 104.753 -
Reboiler 3 and Stream 2 1.6726 -

Reboiler 1 and Condenser 3 261 -
Reboiler 2 and Condenser 3 2013.7 -

Areas were calculated using Equations 24 and 25. Note that areas of heat exchange cannot be easily calculated
for connections to reboilers or condensers since they do not change temperature. LMTD of the reboiler connections is
shown below in a Equation 26 [7] [2]. This equation could be modified for condenser connections, and condenser-reboiler
connections to get a heat transfer area. Additionally, note that T sat is needed to calculate this area, and since a number
of the streams used for this will be at vapor liquid equilibrium in mixtures of multiple substances, these would need to
be categorized before calculating these areas. In addition, the spatial requirements of the facility would need to be taken
into account since all of the heat transfer occurring at the reboilers and condensers needs to happen in relatively the
same location, complicating things further, thus why calculations for these areas were forgone in this analysis.

Q = UA ∗ LMTD (24)

LMTD =
∆TA − ∆TB
ln(∆TA/∆TB)

(25)

LMTD =
(T sat − T2o) − (T sat − T2i)

lnT sat−T2o

T sat−T2i

(26)

Through this method, we see that the most heat power is transferred through exchangers 1 and 2. This means
that these failing would likely have the largest effect on other streams. This is also supported by the weighted edge
eigenvector centrality values, since streams 1 and 2, the streams exchanging heat in exchangers 1 and 2, have the highest
weighted centrality values. The connection between reboiler 2 and condenser 3 also transfers a great deal of heat, so the
same is true if this connection fails. The areas for heat exchangers 1 and 2 will be very large, so this means that they
will be harder to maintain since they will take up more overall space in the plant, and there will be a greater area for
them to possibly fail. Because these two exchangers also transfer the most heat, precautionary measures should be taken
to make these exchangers less likely to fail, or easier to repair, since they are most likely to have issues, and contribute
the most to the overall network.

iii.2 Steam Raising Network

In the network where steam raising is integrated into the process (Appendix iii), the heat exchanger energies and areas
needed are in Table 13. Numbers in Table 13 are for the full scale plant. Areas for connections to condensers, reboilers,
and the vaporization stream are not calculated for the same reasons as above.

14

CHE 273 Project • November 19, 2018

Table 13: Powers and Areas for Steam Raised Flowsheet

Heat Exchanger Power (kW) Area (m2)
1 4652.252 1624.3
2 109.78 38.64720065
3 2.763 0.9521834871
4 17.582 3.860317573
5 19.012 4.174289484
6 8.47 1.868626706
7 13.439 3.128161073
8 430.474 54.9356993
9 425.1344 22.47118525
10 547.14 48.41905523
11 226 24.83970954
12 345.09 25.55337162
13 12.0 2.453482018
14 70.62 8.274748874
15 38.182 6.484044467
16 3642.3 1274.172275
17 1463.74 514.84686

Heat Exchanger Power (kW)
Area (m2)

Water Stream and Condenser 2 (Connection 1) 485.793
Water Stream and Condenser 2 (Connection 2) 1185.4

Water Stream and Condenser 3 28.83
Vap. Stream and Stream 6 228.91
Vap. Stream and Stream 7 1960.251
Vap. Stream and Stream 8 163.955

Vap. Stream and Condenser 3 21683.17

Within this network, There are several heat exchangers that are very important to the overall network. These are
exchangers 1, 16, and 17, the second connection between water and condenser 2, V (the vaporization stream) connected
with stream 7, and V connected with condenser 3, since these all transfer more than 1 MW of power. The connection
between V and condenser 3 is especially important since it is transferring 21.683 MW, so if this fails, the impact on the
system would be disastrous. This observation is supported by the fact that condenser 3 has the second highest weighted
centrality value, meaning that if something goes wrong here, the entire system becomes affected, so extra precaution
needs to be taken to ensure that this exchange does not fail. Due to the interconnectedness of this network (Section
ii , Figure 10), any of these exchangers encountering problems could be devastating for the system as a whole. The
exchangers with the largest heat transfer areas are exchangers 1, 16, and 17. Coincidentally, these exchangers are also
some of the most important to the system, so it would be prudent to design the layout of these heat exchangers in such
a way where they are not likely to get damaged, or can be fixed easily if they fail.

7. Conclusion

Upon full integration of the system from the given diagram, we were able to recover the maximum amount of heat given
the network. After analyzing the system using pinch analysis, the Qhmin, Qcmin and Tpinch values of the pilot plant
analyzed are 2855.987 KW, 2824.387 KW and 254.3◦C when Tmin =10◦C.

An analysis of finding the lowest cost for operating the plant over time was conducted to find the appropriate
measures for developing this plant. After 1 year of running the plant, the lowest cost to develop the system is $41,870,000
if the Tmin is set at 20.384◦C. If the system were to be run for a longer period of time, however (at least 634 days), the
best Tmin for the system would become 10◦C, since this would produce the lowest possible overall cost.

There are great incentives to implement this heat exchange network from both a business perspective and from an
environmental perspective. Based on given information regarding energy facts about coal, the integrated system saves
over $3,000,000 per year and reduces over 94,000,000 kilograms of carbon dioxide emissions to the atmosphere per year.

When comparing other common supercritical fluids (methane, ethane and water) to carbon dioxide as working
fluids, the results are mainly dependent on the critical conditions of the fluid. Methane and ethane showed to be less
effective at producing work than carbon dioxide, but water had promising results before the fluids were attempted to be
integrated. After integration, methane could not be appropriately integrated and ethane did not work as well as carbon
dioxide in the network. Water could be integrated into the system and produced more work than carbon dioxide, but
the arrangement of the network for that to be successful was not feasible overall and thus supercritical carbon dioxide
was the best working fluid for our Carnot engine.

Using eigenvector centrality, the relationships between streams can be analyzed, and the most interconnected
streams can be identified. This type of analysis can be used to find the most important parts of a system. Additionally,
heat exchanger areas and energies were calculated to find the most important exchangers and the amount of area they
take up, since exchangers with larger areas are often more vulnerable to leaks or other problems.

15

CHE 273 Project • November 19, 2018

8. Bibliography

References

[1] “Mixed Xylenes.” IHS Markit, Aug. 2018, ihsmarkit.com/products/xylenes-chemical-economics-handbook.html.

[2] “Process Design of Heat Exchanger: Types of Heat Exchangers : Types of Heat Exchanger, Process Design of Shell
and Tube Heat Exchanger, Condenser and Reboiler.”

[3] Hagberg, Aric A., Schult, Daniel A., and Swart, Pieter J., “Exploring network structure, dynamics, and function
using NetworkX”, in Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis
Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11–15, Aug 2008

[4] He, Yuan, et al. “An Algorithm for Optimal Waste Heat Recovery from Chemical Processes.” Computers Chemical
Engineering, vol. 73, 2015, pp. 17–22., doi:10.1016/j.compchemeng.2014.11.003.

[5] Hunter, John D.,. Matplotlib: A 2D Graphics Environment, Computing in Science Engineering, 9, 90-95
(2007),DOI:10.1109/MCSE.2007.55

[6] Kemp, Ian C. Pinch Analysis and Process Integration: a User Guide on Process Integration for the Efficient Use of
Energy. 2nd ed., vol. 1, Elsevier Science, 2011.

[7] Laskowski, Rafal, et al. “Determining the Optimum Inner Diameter of Condenser Tubes Based on Thermodynamic
Objective Functions and an Economic Analysis.” Poland, Warsaw.

[8] Latiz, Madeleine R, et al. “Critical CO2 Carnot Cycle for Waste Heat Utilization.” New York, Rochester.

[9] Olivia Pusineli. “ExxonMobil Chemical to Buy Major Plant in Singapore.” Bizjournals.com, Houston Business Journal,
12 May 2017, www.bizjournals.com/houston/news/2017/05/12/exxonmobil-chemical-to-buy-major-plant-in.html.

[10] Smith, J. M., et al.Introduction to Chemical Engineering Thermodynamics. 8th ed., McGraw-Hill Education, 2018.

[11] Travis E, Oliphant. A guide to NumPy, USA: Trelgol Publishing, (2006).

[12] Woods, Laura. “Global Xylene Market Analysis, Growth, Trends Forecast 2018-
2023 - ResearchAndMarkets.com.”emphBusiness Wire, Business Wire, 28 May 2018,
www.businesswire.com/news/home/20180528005115/en/Global-Xylene-Market-Analysis-Growth-Trends-Forecast.

16

CHE 273 Project • November 19, 2018

9. Appendix

i. Original Network Flowsheet

Figure 11: Design Process Flowsheet

17

CHE 273 Project • November 19, 2018

ii. Network Flowsheet with Carnot Engine Integrate

Figure 12: Carnot Integrated Process Flowsheet

18

CHE 273 Project • November 19, 2018

iii. Steam Raised Network Flowsheet

Figure 13: Steam Raised Process Flowsheet

19

CHE 273 Project • November 19, 2018

iv. Supercritical Water Carnot Cycle

Figure 14: Steam Raised Process Flowsheet

20

CHE 273 Project • November 19, 2018

v. Supercritical Methane Carnot Cycle

Figure 15: Steam Raised Process Flowsheet

21

CHE 273 Project • November 19, 2018

vi. Supercritical Ethane Carnot Cycle

Figure 16: Steam Raised Process Flowsheet

vii. Steam Raising Code
These thermodynamic values were taken from Appendix viii

22

Raising Code.pdf

In [51]:
import numpy as np
import matplotlib.pyplot as plt

I multipy by 10 for all of my enthalpy values so that I can
#test the full scale plant

Qc = 2824.38725*10 #Qc of the real plant
Qh = 2855.9872*10 # Qh of the real plant
#[[30.5, 35.7], [99.5, 186.8], [178.2, 2552.7]]
#[[134.9, -95], [155.3, -286.5], [254.3, -2832]]

temps = [455.0, 445.0, 254.3,254.3,
 244.3, 178.2, 178.2, 155.3,155.3, 134.9,134.9, 124.9,
 99.5, 99.5, 80.0, 75.0, 65.0, 45.0, 40.5, 35.0, 30.5,30.5, 30.0, 20.0, 15.0]

Q = [0,-24.39565742, 0.4083983525000012, -2832, 0.021415750000000067,
 7.921495692060003, 2552.7, 77.36907013433992, -286.5, 68.92266509784002, -95,
 33.785620146, 115.03311043624004, 186.8, 101.0867340483, 19.762532542, -3.292422953,
 -18.486295181999996, 1.3820121535499998, 15.106737546449999, 1.3723750660499998, 35.7,
 0.41377644105, 7.6755288209999994, 2.6129032260000002]

#temps and Q are lists corrisponding to the "corner points" of the GCC
Q = [i * 10 for i in Q] # turnes the Q's into the real plants Q

print(Q)
newq =[]
Sum = Qh

for i in range(len(Q)):
 Sum = Sum + Q[i]
 newq.append(Sum) #creates a list enthaklpuied corresponding from the high temp to low

plt.plot(newq[5::], temps[5::]) # this plots the Grand Composite Curve
plt.title("Grand Composite Curve Below Pinch")
plt.ylabel("Temperature °C")
plt.xlabel("Enthalpy KW")
plt.show()

In [53]:
Hwsat = 2450*10 #guess from graph
Hvap =2256 #Kj/Kg
Cpw = 4.19 #Kj/Kg*C
Tsat = 105 #C assumed
Cps = 1.996 #Kj/Kg*C
Tstart = 30 #C
Tfinal = 125 # Final temp of steam

[0, -243.95657419999998, 4.083983525000012, -28320, 0.21415750000000067, 79.21495692060003,
25527.0, 773.6907013433993, -2865.0, 689.2266509784002, -950, 337.85620145999997,
1150.3311043624003, 1868.0, 1010.867340483, 197.62532542, -32.92422953, -184.86295181999995,
13.820121535499998, 151.0673754645, 13.723750660499999, 357.0, 4.1377644105, 76.75528820999999,
26.129032260000002]

Raising Code.pdf

Tfinal = 125 # Final temp of steam
count = 0

#creating the graph physically
Main_temps = [] #254.3-->30
C = 254.3 #this starts the list below the pinch so we can look at the
#pertinent values of the eqaution
while C>=30:
 Main_temps.append(C)
 C = C-.1 #gves temperature values for the

graphenthalpy = [] #the raw data

for i in range(len(temps)-1):
 slope = (temps[i+1]-temps[i])/(newq[i+1]-newq[i]) #this calculates the slope.
 if slope == 0:
 slope =.000000001
 for j in range(len(Main_temps)):
 if (Main_temps[j] < temps[i] and Main_temps[j]
 > temps[i+1]):
 H = (1/slope)*(Main_temps[j]-temps[i])
 +newq[i]
 graphenthalpy.append(H)
Main_temps.pop() #removes the last element from the list

#making the optomal steam lines based on equations
graphenthalpysteam = []
graphtempssteam = []
holder = True
while holder == True: # thsi is ideration,
 count = 0

 Hssat = Cps*Hwsat*(Tfinal-Tsat)/(Hvap +Cps*
 (Tfinal - Tsat))
 Hstart = Hwsat*(1+Cpw*((Tsat-Tstart)/Hvap))-Hwsat*
 ((Cpw*Cps*(Tsat-Tstart)/Hvap)
 ((Tfinal-Tsat)/(Hvap+Cps(Tfinal-Tsat))))
 Mw = (Hwsat/Hvap)*(1-Cps*(Tfinal-Tsat)/(
 Hvap + Cps*(Tfinal-Tsat)))
 crit_S_enthalpies = [0,Hssat,Hwsat,Hstart]
 # important x values for slope
 crit_S_temps = [Tfinal,Tsat,Tsat,Tstart]
 # important y values for slope
 graphenthalpysteam = []
 #the graphing enthalpies for steam
 graphtempssteam = []
 #the graphing temps for steam

 for i in range(len(crit_S_temps)-1):
 slope = (crit_S_temps[i+1]-crit_S_temps[i])/
 (crit_S_enthalpies[i+1]-crit_S_enthalpies[i])
 if slope == 0:
 slope = .000000001
 #Deals with when you get an undefined slope aka a horizonal line.
 for j in range(len(Main_temps)):
 if Main_temps[j] < crit_S_temps[i] and
 Main_temps[j] > crit_S_temps[i+1]:
 H = (1/slope)*(Main_temps[j]-
 crit_S_temps[i])+crit_S_enthalpies[i]
 graphenthalpysteam.append(H)
 #appends the enthalpy at a specific temoperature
 graphtempssteam.append(Main_temps[j])
 #appends the temperature used to caculate the enthalpy

 if Hwsat > 2449.797*10: #this makes sure that the
 #value of Hwsat is always
 #barely touvhing th GCC
 count = count + 1
 #this let me check for any other values where the GCC may cross.
 if graphenthalpysteam[graphtempssteam.index(30.500000000010353)]
 > 2813.85*10:
 count = count + 1

Raising Code.pdf

 if count >= 1 :
 Hwsat = Hwsat-.1
 # this is where we decrement Hwsat

 if count == 0:
 print("the mass flow rate is",Mw)
 # this should print the max flow rate
 # possible in the GCC.
 if Hssat <= 0:
 print("no solution can be found due to Hssat")
 holder = False

plt.plot(newq[5::], temps[5::],linewidth=2, label='Grand Composite Curve')# this takes the upper
half of the system out of the graph
plt.plot(Hstart,Tstart, marker = 'o', color = "green") # important point
plt.plot(Hwsat,Tsat, marker = 'o', color = "green")# important point
plt.plot(0, Tfinal, marker = 'o', color = "Green")# important point
plt.plot(Hssat,Tsat,marker = 'o', color = "Green")# important point
plt.plot(graphenthalpysteam,graphtempssteam,linewidth=2, label='Steam Raising Lines')
plt.title("Steam Raising Below Pinch")
plt.ylabel("Temperature °C")
plt.xlabel("Enthalpy KW")
plt.legend(loc ="best")
plt.show()
#print(Hstart)

In [4]:
Value Finder for graph
#for i in range(len(Main_temps)):
 # if Main_temps[i] <=35 and Main_temps[i]>= 25:
 # print(graphenthalpy[i])

In [37]:
for i in range(len(graphtempssteam)):
 if graphtempssteam[i] <=29 and graphtempssteam[i]>= 31 :
 print(graphenthalpysteam[i])

the mass flow rate is 10.670188856754605

CHE 273 Project • November 19, 2018

viii. Table of Steam Raising Variables

Table 14: Variables Used Within Steam Raising Equations. All values come from Introduction to Chemical Engineering [10]

Variable Definition Units Value
Mw Mass Flow Rate kg/S Unknown
Cpw Heat Capacity of Water In kJ/kg*◦C 4.19
Cps Heat Capacity of Steam In kJ/kg*◦C 1.996
Hstart Enthalpy of the Inlet Water kW Unknown
Tstart Temperature of the Inlet Water ◦C 20◦C
Hwsat Enthalpy of Saturated Water In kW Manually Changed
Tsat Water Vaporization Temperature ◦C 100◦(105◦shifted)
Hssat Enthalpy of Saturated Steam In kW unknown

∆Hvap Vaporization Enthalpy In kJ/Kg 2265
Tfinal Final Temperature of Steam In ◦C 120◦C

ix. Supercritical CO2 Carnot Cycle Code

26

Cycle - Super Critical CO2.pdf

Carnot Cycle - Super Critical CO2

November 19, 2018

In [21]: import numpy as np

import matplotlib.pyplot as plt

In [184]: R = .08314 #L-bar/mol*K

Tc = 304.1 #K, lower isotherm

Pc = 73.8 #bar

Th = 353.15 #80 degrees Celsius, upper isotherm

r = 8.314 #J/mol*K

n = 1 - (Tc/Th) #Efficiency of the Carnot engine equation

a = 27/64*(R**2)*(Tc**2)/Pc #Parameter calculations that apply to the Van der Waal's Equation

b = 1/8*R*Tc/Pc

Vc = 3/8*R*Tc/Pc #Critical Volume

CompRatio = 2 #V2/V1

V1 = .085647

V2 = V1*CompRatio

Tspace = np.linspace(Tc, Th, 1000) #array of temperatures that will be used to establish the adiabatic curves

list(Tspace) #converting the array to a list

A = 5.457 #Heat Capacity coefficients

B = 1.045*10**-3

C = 0

D = -1.157*10**5

y = 1.29 #Cp - Cv

testCv = (R*(A + B*Tspace + C*(Tspace**2) + D*(Tspace**-2)))/y #Calculating Cv

Cv = np.mean(testCv)

Var = ((V2-b)*((Tc/Tspace)**(Cv/R))) + b #Volume range of the right adiabat

Par = ((R*Tspace)/(Var-b))-(a/(Var**2)) #Pressure list based on parameters, temp list and volume range

Val = ((V1-b)*((Th/Tspace)**(Cv/R))) + b #Volume range of the left adiabat

Pal = ((R*Tspace)/(Val-b))-(a/(Val**2)) #Pressure list based on parameters, temp list and volume range

1

Cycle - Super Critical CO2.pdf

hVspace = np.linspace(V1, Var[-1], 100) #Volume range for upper isotherm

Ph = ((R*Th)/(hVspace-b))-(a/(hVspace**2)) #Pressure list for the upper isotherm

cVspace = np.linspace(Val[0], V2, 100) #Volume range for lower isotherm

Pc = ((R*Tc)/(cVspace-b))-(a/(cVspace**2)) #Pressure list for lower isotherm

#Plotting all curves, adding specific points

plt.plot(cVspace, Pc, label = 'Lower Isotherm')

plt.plot(cVspace[0], Pc[0], marker = 'o', color = 'red', label = "V_A")

plt.plot(cVspace[-1], Pc[-1], marker = 'o', color = 'blue', label = "V2")

plt.plot(hVspace, Ph, label = 'Upper Isotherm')

plt.plot(hVspace[0], Ph[0], marker = 'o', color = 'orange', label = "V1")

plt.plot(hVspace[-1], Ph[-1], marker = 'o', color = 'green', label = "V_B")

plt.plot(Var, Par, label= 'Right Adiabat')

plt.plot(Val, Pal, label = 'Left Adiabat')

plt.grid(True)

plt.xlabel('Volume (L/mol)')

plt.ylabel('Pressure (bar)')

plt.title("Supercritical Carbon Dioxide - Carnot Cycle")

plt.legend(loc = 'best')

plt.show()

#Finding the work associated with the plot of the graph

War = -np.trapz(Par, Var)

Wth = np.trapz(Ph, hVspace)

Wal = -np.trapz(Pal, Val)

Wtc = np.trapz(Pc, cVspace)

#Using equations given to solve for and report findings for this supercritical fluid.

print('The efficiency of this system is {:.3}'.format(n*100), '%.')

Qh = r*Th*np.log((Var[-1]-b)/(V1-b)) #Qh for one cycle

print('The theoretical input energy, Qh, is {:.7}'.format(Qh), "Joules/sec.")

TheoWORK = Qh*(1-(Tc/Th))

print('The theoretical work of this system is {:.7}'.format(TheoWORK), "Joules/cycle*mol")

TheoQc = Qh*(1-n)

print('The theoretical work removed from the engine is {:.7}'.format(TheoQc), "Joules/sec")

WORK = ((War+Wth)-(Wal+Wtc))*100

print('The work from the system is {:.7}'.format(WORK), "Joules/cycle.")

Qhnetwork = 1521768 #From cooler 5, W #Full scale size, 10x greater than the numbers listed on the network

print('The power available from the network is',(Qhnetwork), 'Joules/sec')

2

Cycle - Super Critical CO2.pdf

Qcnetwork = Qhnetwork*(1-n)

print('The power lost by the engine is {:.8}'.format(Qcnetwork), 'Joules/sec')

Moles = 40

print('The number of moles that the engine contains is',(Moles), 'moles.')

Hz = (n*Qhnetwork)/(WORK*Moles)

print('The RPS of the Carnot Engine is {:.4}'.format(Hz), "Cycles/second.")

V_Engine = V2*Moles

print('The size of the Carnot Engine is {:.4}'.format(V_Engine), "L")

Work_Cost_Savings = WORK*Hz*Moles*300*24*(1/1000)*(1/6.67)*(60/1000)*(1/.3)

print('The amount of money saved by utilizing this engine is ${:.6}'.format(Work_Cost_Savings))

Cooler_Cost_Savings = (Qhnetwork/1000)*24*300*(1/6.67)*(60/1000)*(1/.3)

print('The amount of money saved by no longer needing to run the cooler is ${:.7}'.format(Cooler_Cost_Savings))

The efficiency of this system is 13.9 %.

The theoretical input energy, Qh, is 1618.123 Joules/sec.

The theoretical work of this system is 224.7457 Joules/cycle*mol

The theoretical work removed from the engine is 1393.377 Joules/sec

The work from the system is 224.7488 Joules/cycle.

3

Cycle - Super Critical CO2.pdf

The power available from the network is 1521768 Joules/sec

The power lost by the engine is 1310405.3 Joules/sec

The number of moles that the engine contains is 40 moles.

The RPS of the Carnot Engine is 23.51 Cycles/second.

The size of the Carnot Engine is 6.852 L

The amount of money saved by utilizing this engine is $45631.5

The amount of money saved by no longer needing to run the cooler is $328537.6

4

CHE 273 Project • November 19, 2018

x. Supercritical Methane Carnot Cycle Code

31

Cycle - Super Critical Methane.pdf

Carnot Cycle - Super Critical Methane

November 19, 2018

In [34]: import numpy as np

import matplotlib.pyplot as plt

In [44]: R = .08314 #L-bar/mol*K

Tc = 190.6 #K, lower isotherms

Pc = 45.99 #bar, critical pressure

Th = 298.15 #20 degrees celsius, best attempt to integrate Methane to the network

r = 8.314 #J/mol*K

n = 1 - (Tc/Th) #efficiency of the Carnot Engine

a = 27/64*(R**2)*(Tc**2)/Pc #Parameter calculations that apply to the Van der Waal's Equation

b = 1/8*R*Tc/Pc

Vc = 3/8*R*Tc/Pc #Critical Volume

CompRatio = 2 #V2/V1

V1 = .086141

V2 = V1*CompRatio

Tspace = np.linspace(Tc, Th, 1000) #array of temperatures that will be used to establish the adiabatic curves

list(Tspace) #converting the array to a list

A = 1.702 #Heat Capacity coefficient

B = 9.081*10**-3

C = -2.164*10**-6

D = 0

y = 1.31

testCv = (R*(A + B*Tspace + C*(Tspace**2) + D*(Tspace**-2)))/y #Calculating Cv

Cv = np.mean(testCv)

Var = ((V2-b)*((Tc/Tspace)**(Cv/R))) + b #Volume range of the right adiabat

Par = ((R*Tspace)/(Var-b))-(a/(Var**2)) #Pressure list based on parameters, temp list and volume range

Val = ((V1-b)*((Th/Tspace)**(Cv/R))) + b #Volume range of the left adiabat

Pal = ((R*Tspace)/(Val-b))-(a/(Val**2)) #Pressure list based on parameters, temp list and volume range

1

Cycle - Super Critical Methane.pdf

hVspace = np.linspace(V1, Var[-1], 100) #Volume range for upper isotherm

Ph = ((R*Th)/(hVspace-b))-(a/(hVspace**2)) #Pressure list for the upper isotherm

cVspace = np.linspace(Val[0], V2, 100) #Volume range for lower isotherm

Pc = ((R*Tc)/(cVspace-b))-(a/(cVspace**2)) #Pressure list for lower isotherm

#Plotting all curves

plt.plot(cVspace, Pc, label = 'Lower Isotherm')

plt.plot(hVspace, Ph, label = 'Upper Isotherm')

plt.plot(Var, Par, label = 'Right Adiabat')

plt.plot(Val, Pal, label = 'Left Adiabat')

plt.grid(True)

plt.xlabel('Volume (L/mol)')

plt.ylabel('Pressure (bar)')

plt.title("Supercritical Methane - Carnot Cycle")

plt.legend(loc = 'best')

plt.show()

#Finding the work associated with the plot of the graph

War = -np.trapz(Par, Var)

Wth = np.trapz(Ph, hVspace)

Wal = -np.trapz(Pal, Val)

Wtc = np.trapz(Pc, cVspace)

#Using equations given to solve for and report findings for this supercritical fluid.

print('The efficiency of this system is {:.3}'.format(n*100), '%.')

Qh = r*Th*np.log((Var[-1]-b)/(V1-b)) #Qh for one cycle

print('The theoretical input energy, Qh, is {:.7}'.format(Qh), "Joules/sec.")

TheoWORK = Qh*(1-(Tc/Th))

print('The theoretical work of this system is {:.7}'.format(TheoWORK), "Joules/cycle*mol")

TheoQc = Qh*(1-n)

print('The theoretical work removed from the engine is {:.7}'.format(TheoQc), "Joules/sec")

WORK = ((War+Wth)-(Wal+Wtc))*100

print('The work from the system is {:.7}'.format(WORK), "Joules/cycle*mol.")

Qhnetwork = 81000

print('The power available from the network is',(Qhnetwork), 'Joules/sec')

Qcnetwork = Qhnetwork*(1-n)

print('The power lost by the engine is {:.8}'.format(Qcnetwork), 'Joules/sec')

2

Cycle - Super Critical Methane.pdf

Moles = 40

print('The number of moles that the engine contains is',(Moles), 'moles.')

Hz = (n*Qhnetwork)/(WORK*Moles)

print('The RPS of the Carnot Engine is {:.4}'.format(Hz), "Cycles/second.")

V_Engine = V2*Moles

print('The size of the Carnot Engine is {:.4}'.format(V_Engine), "L")

The efficiency of this system is 36.1 %.

The theoretical input energy, Qh, is -485.3017 Joules/sec.

The theoretical work of this system is -175.0602 Joules/cycle*mol

The theoretical work removed from the engine is -310.2415 Joules/sec

The work from the system is -175.0604 Joules/cycle*mol.

The power available from the network is 81000 Joules/sec

The power lost by the engine is 51781.318 Joules/sec

The number of moles that the engine contains is 40 moles.

The RPS of the Carnot Engine is -4.173 Cycles/second.

The size of the Carnot Engine is 6.891 L

3

CHE 273 Project • November 19, 2018

xi. Supercritical Ethane Carnot Cycle Code

35

Cycle - Super Critical Ethane .pdf

Carnot Cycle - Super Critical Ethane

November 19, 2018

In [6]: import numpy as np

import matplotlib.pyplot as plt

In [23]: R = .08314 #L-bar/mol*K

Tc = 305.3 #K, critical temperature

Pc = 48.72 #bar

Th = 353.15 #80 degrees Celsius, upper isotherm

n = 1 - (Tc/Th) #Efficiency of the Carnot engine equation

a = 27/64*(R**2)*(Tc**2)/Pc #Parameter calculations that apply to the Van der Waal's Equation

b = 1/8*R*Tc/Pc

Vc = 3/8*R*Tc/Pc #Critical Volume

CompRatio = 2 #V2/V1

V1 = .130248

V2 = V1*CompRatio

Tspace = np.linspace(Tc, Th, 1000) #array of temperatures that will be used to establish the adiabatic curves

list(Tspace) #converting the array to a list

A = 1.131 #Heat Capacity coefficients

B = 19.225*10**-3

C = -5.561*10**-6

D = 0

y = 1.19

testCv = (R*(A + B*Tspace + C*(Tspace**2) + D*(Tspace**-2)))/y

Cv = np.mean(testCv) #Calculating Cv

Var = ((V2-b)*((Tc/Tspace)**(Cv/R))) + b #Volume range of the right adiabat

Par = ((R*Tspace)/(Var-b))-(a/(Var**2)) #Pressure list based on parameters, temp list and volume range

Val = ((V1-b)*((Th/Tspace)**(Cv/R))) + b #Volume range of the left adiabat

Pal = ((R*Tspace)/(Val-b))-(a/(Val**2)) #Pressure list based on parameters, temp list and volume range

1

Cycle - Super Critical Ethane .pdf

hVspace = np.linspace(V1, Var[-1], 100) #Volume range for upper isotherm

Ph = ((R*Th)/(hVspace-b))-(a/(hVspace**2)) #Pressure list for the upper isotherm

cVspace = np.linspace(Val[0], V2, 100) #Volume range for lower isotherm

Pc = ((R*Tc)/(cVspace-b))-(a/(cVspace**2)) #Pressure list for lower isotherm

#Plotting all curves

plt.plot(cVspace, Pc, label = 'Lower Isotherm')

plt.plot(hVspace, Ph, label = 'Upper Isotherm')

plt.plot(Var, Par, label = 'Right Adiabat')

plt.plot(Val, Pal, label = 'Left Adiabat')

plt.grid(True)

plt.xlabel('Volume (L/mol)')

plt.ylabel('Pressure (bar)')

plt.title("Supercritical Ethane - Carnot Cycle")

plt.legend(loc = 'best')

plt.show()

#Finding the work associated with the plot of the graph

War = -np.trapz(Par, Var)

Wth = np.trapz(Ph, hVspace)

Wal = -np.trapz(Pal, Val)

Wtc = np.trapz(Pc, cVspace)

#Using equations given to solve for and report findings for this supercritical fluid.

print('The efficiency of this system is {:.3}'.format(n*100), '%.')

Qh = r*Th*np.log((Var[-1]-b)/(V1-b)) #Qh for one cycle

print('The theoretical input energy, Qh, is {:.7}'.format(Qh), "Joules/sec.")

TheoWORK = Qh*(1-(Tc/Th))

print('The theoretical work of this system is {:.7}'.format(TheoWORK), "Joules/cycle*mol")

TheoQc = Qh*(1-n)

print('The theoretical work removed from the engine is {:.7}'.format(TheoQc), "Joules/sec")

WORK = ((War+Wth)-(Wal+Wtc))*100

print('The work from the system is {:.7}'.format(WORK), "Joules/cycle.")

Qhnetwork = 1521768 #From cooler 5, W #Full scale size, 10x greater than the numbers listed on the network

print('The power available from the network is',(Qhnetwork), 'Joules/sec')

Qcnetwork = Qhnetwork*(1-n)

print('The power lost by the engine is {:.8}'.format(Qcnetwork), 'Joules/sec')

Moles = 40

2

Cycle - Super Critical Ethane .pdf

print('The number of moles that the engine contains is',(Moles), 'moles.')

Hz = (n*Qhnetwork)/(WORK*Moles)

print('The RPS of the Carnot Engine is {:.4}'.format(Hz), "Cycles/second.")

V_Engine = V2*Moles

print('The size of the Carnot Engine is {:.4}'.format(V_Engine), "L")

The efficiency of this system is 13.5 %.

The theoretical input energy, Qh, is 762.5147 Joules/sec.

The theoretical work of this system is 103.3168 Joules/cycle*mol

The theoretical work removed from the engine is 659.1979 Joules/sec

The work from the system is 103.3172 Joules/cycle.

The power available from the network is 1521768 Joules/sec

The power lost by the engine is 1315576.3 Joules/sec

The number of moles that the engine contains is 40 moles.

The RPS of the Carnot Engine is 49.89 Cycles/second.

The size of the Carnot Engine is 10.42 L

3

CHE 273 Project • November 19, 2018

xii. Supercritical Water Carnot Cycle Code

39

Cycle - Super Critical H2O.pdf

Carnot Cycle - Super Critical H2O

November 19, 2018

In [1]: import numpy as np

import matplotlib.pyplot as plt

In [14]: R = .08314 #L-bar/mol*K

Tc = 647.1 #K, critical temperature

Pc = 220.55 #bar, critical pressure

Th = 683.15 #410 degrees Celsius

r = 8.314 #J/mol*K

n = 1 - (Tc/Th) #Efficiency of the Carnot engine equation

a = 27/64*(R**2)*(Tc**2)/Pc #Parameter calculations that apply to the Van der Waal's Equation

b = 1/8*R*Tc/Pc

Vc = 3/8*R*Tc/Pc #Critical Volume

CompRatio = 2 #V2/V1

V1 = .060984

V2 = V1*CompRatio

Tspace = np.linspace(Tc, Th, 1000) #array of temperatures that will be used to establish the adiabatic curves

list(Tspace) #converting the array to a list

A = 3.470 #Heat Capacity coefficients

B = 1.450*10**-3

C = 0

D = 0.121*10**5

y = 1.33

testCv = (R*(A + B*Tspace + C*(Tspace**2) + D*(Tspace**-2)))/y #Calculating Cv

Cv = np.mean(testCv)

Var = ((V2-b)*((Tc/Tspace)**(Cv/R))) + b #Volume range of the right adiabat

Par = ((R*Tspace)/(Var-b))-(a/(Var**2)) #Pressure list based on parameters, temp list and volume range

Val = ((V1-b)*((Th/Tspace)**(Cv/R))) + b #Volume range of the left adiabat

Pal = ((R*Tspace)/(Val-b))-(a/(Val**2)) #Pressure list based on parameters, temp list and volume range

1

Cycle - Super Critical H2O.pdf

hVspace = np.linspace(V1, Var[-1], 100) #Need to keep this array at a length of 100 to ensure that this code works

Ph = ((R*Th)/(hVspace-b))-(a/(hVspace**2)) #Pressure list for the upper isotherm

cVspace = np.linspace(Val[0], V2, 100) #Volume range for lower isotherm

Pc = ((R*Tc)/(cVspace-b))-(a/(cVspace**2)) #Pressure list for lower isotherm

#Plotting all curves

plt.plot(cVspace, Pc, label = 'Lower Isotherm')

plt.plot(hVspace, Ph, label = 'Upper Isotherm')

plt.plot(Var, Par, label = 'Right Adiabat')

plt.plot(Val, Pal, label = 'Left Adiabat')

plt.grid(True)

plt.xlabel('Volume (L/mol)')

plt.ylabel('Pressure (bar)')

plt.title("Supercritical Water - Carnot Cycle")

plt.legend(loc = 'best')

plt.show()

#Finding the work associated with the plot of the graph

War = -np.trapz(Par, Var)

Wth = np.trapz(Ph, hVspace)

Wal = -np.trapz(Pal, Val)

Wtc = np.trapz(Pc, cVspace)

#Using equations given to solve for and report findings for this supercritical fluid.

print('The efficiency of this system is {:.3}'.format(n*100), '%.')

Qh = r*Th*np.log((Var[-1]-b)/(V1-b)) #Qh for one cycle

print('The theoretical input energy, Qh, is {:.7}'.format(Qh), "Joules/sec.")

TheoQc = Qh*(1-n)

print('The theoretical work removed from the engine is {:.7}'.format(TheoQc), "Joules/sec")

TheoWORK = Qh*(1-(Tc/Th))

print('The theoretical work of this system is {:.7}'.format(TheoWORK), "Joules/cycle*mol")

WORK = ((War+Wth)-(Wal+Wtc))*100

print('The work from the system is {:.7}'.format(WORK), "Joules/cycle.")

Qhnetwork = 976668 #From cooler 5, W #Full scale size, 10x greater than the numbers listed on the network

print('The power available from the network is',(Qhnetwork), 'Joules/sec')

Qcnetwork = Qhnetwork*(1-n)

print('The power lost by the engine is {:.8}'.format(Qcnetwork), 'Joules/sec')

2

Cycle - Super Critical H2O.pdf

Moles = 40

print('The number of moles that the engine contains is',(Moles), 'moles.')

Hz = (n*Qhnetwork)/(WORK*Moles)

print('The RPS of the Carnot Engine is {:.4}'.format(Hz), "Cycles/second.")

V_Engine = V2*Moles

print('The size of the Carnot Engine is {:.4}'.format(V_Engine), "L")

The efficiency of this system is 5.28 %.

The theoretical input energy, Qh, is 5206.802 Joules/sec.

The theoretical work removed from the engine is 4932.038 Joules/sec

The theoretical work of this system is 274.7643 Joules/cycle*mol

The work from the system is 274.7768 Joules/cycle.

The power available from the network is 976668 Joules/sec

The power lost by the engine is 925128.98 Joules/sec

The number of moles that the engine contains is 40 moles.

The RPS of the Carnot Engine is 4.689 Cycles/second.

The size of the Carnot Engine is 4.879 L

3

CHE 273 Project • November 19, 2018

xiii. Pinch Calculations at Tmin of 10 degrees C Code

43

In [518]:
#COLUMN INTEGRATION

CP = [2.439565742, 2.441707317, 1.231428571, 0.5225806452, 0.6550724638, 0.06, 1.150300601, 3.25872
093, 0.1176995096, 0.1272727273, 0,0, 0, 0, 0, 0] #input CP values (0 for columns)

Ts = [35.5, 450, 40, 35.5, 104.5, 70, 129.9, 183.2, 249.3, 80, 35.5, 129.9, 104.5, 150.3, 183.2, 24
9.3] #input temperatures at inlets

Tt = [450, 40, 75, 20, 70, 35, 80, 80, 25, 25, 35.5, 129.9, 104.5, 150.3, 183.2, 249.3] #input
temperatures at outlets

Qcol = [0,0,0,0,0,0,0,0,0,0, 35.7, -95, 186.8, -286.5, 2552.7, -2832] #input 0 if not a column, -Qre
b for reboiler, or Qcond for condenser

Tmin = 10 #input Tmin

o = list(range(len(CP))) #list of length of the number of streams
Tss = list(range(len(Ts))) #list that will become shifted inlet temperatures
Tts = list(range(len(Tt))) #list that will become shifted outlet temperatures

coldnum = [] #list used to identify cold streams
hotnum = [] #list used to identify hot streams
disnumC = [] #list used to identify condensers
disnumR = [] #list used to identify reboilers
columntempsC = [] #used to identify where the condenders fit into the heat cascade
columntempsR = [] #used to identify where the reboilers fit into the heat cascade

for i in o: #function creating modified temps and identifying hot vs cold streams
 if Ts[i] > Tt[i]:
 Tss[i] = Ts[i]-(Tmin*.5)
 Tts[i] = Tt[i]-(Tmin*.5)
 hotnum.append(i)

 if Ts[i] < Tt[i]:
 Tss[i] = Ts[i]+(Tmin*.5)
 Tts[i] = Tt[i]+(Tmin*.5)
 coldnum.append(i)

 if Ts[i] == Tt[i]: #identifies columns/shifts temps
 if Qcol[i] > 0:
 Tss[i] = Ts[i]-(Tmin*.5)
 Tts[i] = Tt[i]-(Tmin*.5)
 disnumC.append(i)
 columntempsC.append([Tts[i], Qcol[i]])
 if Qcol[i] < 0:
 Tss[i] = Ts[i]+(Tmin*.5)
 Tts[i] = Tt[i]+(Tmin*.5)
 disnumR.append(i)
 columntempsR.append([Tts[i], Qcol[i]])

In [519]:
Tall = [] #list of all shifted temperatures
for i in o:
 Tall.append(Tss[i])
 Tall.append(Tts[i])

Tstar = list(set(Tall)) #list of all temperatures, without repeats, in descending order
Tstar.sort(reverse=True)
print(Tstar) #HEAT CASCADE TEMPS

print()

CPtot = [] #will be list of net CPs for each temp interval
lenT = list(range(len(Tstar) - 1)) #list for iterating through temperature intervals
p=0
lentempc = list(range(len(coldnum))) #iterates over cold streams
lentemph = list(range(len(hotnum))) #iterates over hot streams

#function to calculate net CPs
for i in lenT: #iterate through temp intervals
 p=0

 p=0
 for j in o: #iterate through streams
 for k in lentempc:
 if j == coldnum[k]: #if cold, increase temp in integer increments to see
 #if it's in the selected temp range
 x = Tss[j]
 while Tts[j] >= x:
 if -.005 +x <Tstar[i] -.1 < x +.005:
 p = p-CP[j]
 x = x+.1
 for k in lentemph: #same for hot streams, but decreasing temp
 if j == hotnum[k]:
 x = Tss[j]
 while Tts[j] <= x:
 if -.005 + x<Tstar[i] -.1 <x+.005:
 p = p+CP[j]
 x = x-.1
 CPtot.append(p)
print(CPtot) #NET CP VALUES

In [520]:
H = [] #list of delta H values for intervals
Hval = list(range((len(Tstar) - 1))) #list to iterate through temperature intervals

for i in Hval:
 H.append((Tstar[i]-Tstar[i+1])*(CPtot[i])) #calculates delta H

print(H) #delta Hs before column integration
print()

count = 0
for i in range(len(Tstar)): #adds in column values
 for j in range(len(columntempsR)):
 if Tstar[i] == columntempsR[j][0]:
 H.insert(count + i, columntempsR[j][1])
 count = count+1
 for j in range(len(columntempsC)):
 if Tstar[i] == columntempsC[j][0]:
 H.insert(count + i, columntempsC[j][1])
 count = count+1

print(H) #delta Hs after column integration

In [521]:
Hlen = list(range(len(H))) #list of delta H values for intervals

Hsum = []
n = 0
for i in Hlen:
 n = n+H[i]
 Hsum.append(n)
Qh = -min(Hsum) #Qh is -largest negative number when adding through H

[455.0, 445.0, 254.3, 244.3, 178.2, 155.3, 134.9, 124.9, 99.5, 80.0, 75.0, 65.0, 45.0, 40.5, 35.0,
30.5, 30.0, 20.0, 15.0]

[-2.439565742, 0.0021415750000000067, 0.0021415750000000067, 0.11984108460000001, 3.3785620146, 3.
3785620146, 3.3785620146, 4.5288626156000005, 5.1839350794, 3.9525065084, -0.3292422953, -
0.9243147590999998, 0.3071138119, 2.7466795539, 0.30497223689999997, 0.8275528821, 0.7675528821, 0.
5225806452]

[-24.39565742, 0.4083983525000012, 0.021415750000000067, 7.921495692060003, 77.36907013433992, 68.
92266509784002, 33.785620146, 115.03311043624004, 101.0867340483, 19.762532542, -3.292422953, -18.
486295181999996, 1.3820121535499998, 15.106737546449999, 1.3723750660499998, 0.41377644105,
7.6755288209999994, 2.6129032260000002]

[-24.39565742, 0.4083983525000012, -2832, 0.021415750000000067, 7.921495692060003, 2552.7,
77.36907013433992, -286.5, 68.92266509784002, -95, 33.785620146, 115.03311043624004, 186.8,
101.0867340483, 19.762532542, -3.292422953, -18.486295181999996, 1.3820121535499998,
15.106737546449999, 1.3723750660499998, 35.7, 0.41377644105, 7.6755288209999994,
2.6129032260000002]

print(Qh) #Qh
Hnewsum = list(range(len(Hsum))) #***HEAT CASCADE Hs***

for i in Hlen:
 Hnewsum[i] = Hsum[i] + Qh
print()
print(Hnewsum) #Heat Cascade after Qh

In [522]:
Qc = sum(H)+Qh #Qc is ending value of cacade after adding Qc
print(Qc)

pinch = 0
count = 0
recheckR = len(columntempsR)*[0]
recheckC = len(columntempsC)*[0]

Q = Qh
for i in Hlen: #finds pinch by checking for zero value in cascade
 Q = Q + H[i]
 if -.01 < Q < .01:
 pinch = Tstar[i+1-count]

 for j in range(len(columntempsR)):
 if Tstar[i+1-count] == columntempsR[j][0]:
 if recheckR[j] == 0:
 count = count + 1
 recheckR[j] = 1
 else:
 recheckR[j] = 0
 for j in range(len(columntempsC)):
 if Tstar[i+1-count] == columntempsC[j][0]:
 if recheckC[j] == 0:
 count = count + 1
 recheckC[j] = 1
 else:
 recheckC[j] = 0

print(pinch) #pinch temperature

In [523]:
#COLUMN INTEGRATION (Tmin of 20)

CP = [2.439565742, 2.441707317, 1.231428571, 0.5225806452, 0.6550724638, 0.06, 1.150300601, 3.25872
093, 0.1176995096, 0.1272727273, 0,0, 0, 0, 0, 0] #input CP values (0 for columns)

Ts = [35.5, 450, 40, 35.5, 104.5, 70, 129.9, 183.2, 249.3, 80, 35.5, 129.9, 104.5, 150.3, 183.2, 24
9.3] #input temperatures at inlets

Tt = [450, 40, 75, 20, 70, 35, 80, 80, 25, 25, 35.5, 129.9, 104.5, 150.3, 183.2, 249.3] #input
temperatures at outlets

Qcol = [0,0,0,0,0,0,0,0,0,0, 35.7, -95, 186.8, -286.5, 2552.7, -2832] #input 0 if not a column, -Qre
b for reboiler, or Qcond for condenser

Tmin = 20 #input Tmin

o = list(range(len(CP))) #list of length of the number of streams
Tss = list(range(len(Ts))) #list that will become shifted inlet temperatures
Tts = list(range(len(Tt))) #list that will become shifted outlet temperatures

2855.9872590675

[2831.5916016475, 2832.0, 0.0, 0.0214157499999601, 7.942911442059994, 2560.64291144206,
2638.0119815763996, 2351.5119815763996, 2420.43464667424, 2325.43464667424, 2359.22026682024,
2474.25337725648, 2661.05337725648, 2762.1401113047796, 2781.90264384678, 2778.61022089378,
2760.12392571178, 2761.50593786533, 2776.61267541178, 2777.9850504778296, 2813.68505047783,
2814.0988269188797, 2821.77435573988, 2824.38725896588]

2824.38725896588
254.3

CHE 273 Project • November 19, 2018

xiv. Pinch Calculations at Tmin of 20 degrees C Code

47

print(Qh) #Qh
Hnewsum = list(range(len(Hsum))) #***HEAT CASCADE Hs***

for i in Hlen:
 Hnewsum[i] = Hsum[i] + Qh
print()
print(Hnewsum) #Heat Cascade after Qh

In [522]:
Qc = sum(H)+Qh #Qc is ending value of cacade after adding Qc
print(Qc)

pinch = 0
count = 0
recheckR = len(columntempsR)*[0]
recheckC = len(columntempsC)*[0]

Q = Qh
for i in Hlen: #finds pinch by checking for zero value in cascade
 Q = Q + H[i]
 if -.01 < Q < .01:
 pinch = Tstar[i+1-count]

 for j in range(len(columntempsR)):
 if Tstar[i+1-count] == columntempsR[j][0]:
 if recheckR[j] == 0:
 count = count + 1
 recheckR[j] = 1
 else:
 recheckR[j] = 0
 for j in range(len(columntempsC)):
 if Tstar[i+1-count] == columntempsC[j][0]:
 if recheckC[j] == 0:
 count = count + 1
 recheckC[j] = 1
 else:
 recheckC[j] = 0

print(pinch) #pinch temperature

In [523]:
#COLUMN INTEGRATION (Tmin of 20)

CP = [2.439565742, 2.441707317, 1.231428571, 0.5225806452, 0.6550724638, 0.06, 1.150300601, 3.25872
093, 0.1176995096, 0.1272727273, 0,0, 0, 0, 0, 0] #input CP values (0 for columns)

Ts = [35.5, 450, 40, 35.5, 104.5, 70, 129.9, 183.2, 249.3, 80, 35.5, 129.9, 104.5, 150.3, 183.2, 24
9.3] #input temperatures at inlets

Tt = [450, 40, 75, 20, 70, 35, 80, 80, 25, 25, 35.5, 129.9, 104.5, 150.3, 183.2, 249.3] #input
temperatures at outlets

Qcol = [0,0,0,0,0,0,0,0,0,0, 35.7, -95, 186.8, -286.5, 2552.7, -2832] #input 0 if not a column, -Qre
b for reboiler, or Qcond for condenser

Tmin = 20 #input Tmin

o = list(range(len(CP))) #list of length of the number of streams
Tss = list(range(len(Ts))) #list that will become shifted inlet temperatures
Tts = list(range(len(Tt))) #list that will become shifted outlet temperatures

2855.9872590675

[2831.5916016475, 2832.0, 0.0, 0.0214157499999601, 7.942911442059994, 2560.64291144206,
2638.0119815763996, 2351.5119815763996, 2420.43464667424, 2325.43464667424, 2359.22026682024,
2474.25337725648, 2661.05337725648, 2762.1401113047796, 2781.90264384678, 2778.61022089378,
2760.12392571178, 2761.50593786533, 2776.61267541178, 2777.9850504778296, 2813.68505047783,
2814.0988269188797, 2821.77435573988, 2824.38725896588]

2824.38725896588
254.3

coldnum = [] #list used to identify cold streams
hotnum = [] #list used to identify hot streams
disnumC = [] #list used to identify condensers
disnumR = [] #list used to identify reboilers
columntempsC = [] #used to identify where the condenders fit into the heat cascade
columntempsR = [] #used to identify where the reboilers fit into the heat cascade

for i in o: #function creating modified temps and identifying hot vs cold streams
 if Ts[i] > Tt[i]:
 Tss[i] = Ts[i]-(Tmin*.5)
 Tts[i] = Tt[i]-(Tmin*.5)
 hotnum.append(i)

 if Ts[i] < Tt[i]:
 Tss[i] = Ts[i]+(Tmin*.5)
 Tts[i] = Tt[i]+(Tmin*.5)
 coldnum.append(i)

 if Ts[i] == Tt[i]: #identifies columns/shifts temps
 if Qcol[i] > 0:
 Tss[i] = Ts[i]-(Tmin*.5)
 Tts[i] = Tt[i]-(Tmin*.5)
 disnumC.append(i)
 columntempsC.append([Tts[i], Qcol[i]])
 if Qcol[i] < 0:
 Tss[i] = Ts[i]+(Tmin*.5)
 Tts[i] = Tt[i]+(Tmin*.5)
 disnumR.append(i)
 columntempsR.append([Tts[i], Qcol[i]])

In [524]:
Tall = [] #list of all shifted temperatures
for i in o:
 Tall.append(Tss[i])
 Tall.append(Tts[i])

Tstar = list(set(Tall)) #list of all temperatures, without repeats, in descending order
Tstar.sort(reverse=True)
print(Tstar) #HEAT CASCADE TEMPS

print()

CPtot = [] #will be list of net CPs for each temp interval
lenT = list(range(len(Tstar) - 1)) #list for iterating through temperature intervals
p=0
lentempc = list(range(len(coldnum))) #iterates over cold streams
lentemph = list(range(len(hotnum))) #iterates over hot streams

#function to calculate net CPs
for i in lenT: #iterate through temp intervals
 p=0
 for j in o: #iterate through streams
 for k in lentempc:
 if j == coldnum[k]: #if cold, increase temp in integer increments to see
 #if it's in the selected temp range
 x = Tss[j]
 while Tts[j] >= x:
 if -.005 +x <Tstar[i] -.1 < x +.005:
 p = p-CP[j]
 x = x+.1
 for k in lentemph: #same for hot streams, but decreasing temp
 if j == hotnum[k]:
 x = Tss[j]
 while Tts[j] <= x:
 if -.005 + x<Tstar[i] -.1 <x+.005:
 p = p+CP[j]
 x = x-.1
 CPtot.append(p)
print(CPtot) #NET CP VALUES

[460.0, 440.0, 259.3, 239.3, 173.2, 160.3, 139.9, 119.9, 94.5, 85.0, 70.0, 60.0, 50.0, 45.5, 30.0,
25.5, 25.0, 15.0, 10.0]

[-2.439565742, 0.0021415750000000067, 0.0021415750000000067, 0.11984108460000001, 3.3785620146, 3.
3785620146, 3.3785620146, 4.5288626156000005, 5.1839350794, 3.9525065084, -0.3292422953, -

In [525]:
H = [] #list of delta H values for intervals
Hval = list(range((len(Tstar) - 1))) #list to iterate through temperature intervals

for i in Hval:
 H.append((Tstar[i]-Tstar[i+1])*(CPtot[i])) #calculates delta H

print(H) #delta Hs before column integration
print()

count = 0
for i in range(len(Tstar)): #adds in column values
 for j in range(len(columntempsR)):
 if Tstar[i] == columntempsR[j][0]:
 H.insert(count + i, columntempsR[j][1])
 count = count+1
 for j in range(len(columntempsC)):
 if Tstar[i] == columntempsC[j][0]:
 H.insert(count + i, columntempsC[j][1])
 count = count+1

print(H) #delta Hs after column integration

In [526]:
Hlen = list(range(len(H))) #list of delta H values for intervals

Hsum = []
n = 0
for i in Hlen:
 n = n+H[i]
 Hsum.append(n)
Qh = -min(Hsum) #Qh is -largest negative number when adding through H

print(Qh) #Qh
Hnewsum = list(range(len(Hsum))) #***HEAT CASCADE Hs***

for i in Hlen:
 Hnewsum[i] = Hsum[i] + Qh
print()
print(Hnewsum) #Heat Cascade after Qh

In [527]:
Qc = sum(H)+Qh #Qc is ending value of cacade after adding Qc
print(Qc)

pinch = 0
count = 0
recheckR = len(columntempsR)*[0]
recheckC = len(columntempsC)*[0]

3785620146, 3.3785620146, 4.5288626156000005, 5.1839350794, 3.9525065084, -0.3292422953, -
0.9243147590999998, 0.3071138119, 2.7466795539, 0.30497223689999997, 0.8275528821, 0.7675528821, 0.
5225806452]

[-48.79131484, 0.38698260250000116, 0.04283150000000013, 7.921495692060003, 43.58344998833992,
68.92266509784002, 67.571240292, 115.03311043624004, 49.247383254300004, 59.287597626, -
3.292422953, -9.243147590999998, 1.3820121535499998, 42.57353308545, 1.3723750660499998,
0.41377644105, 7.6755288209999994, 2.6129032260000002]

[-48.79131484, 0.38698260250000116, -2832, 0.04283150000000013, 7.921495692060003, 2552.7,
43.58344998833992, -286.5, 68.92266509784002, -95, 67.571240292, 115.03311043624004, 186.8,
49.247383254300004, 59.287597626, -3.292422953, -9.243147590999998, 1.3820121535499998,
42.57353308545, 1.3723750660499998, 35.7, 0.41377644105, 7.6755288209999994, 2.6129032260000002]

2880.4043322375

[2831.6130173975002, 2832.0, 0.0, 0.0428314999999202, 7.9643271920599545, 2560.66432719206,
2604.2477771803997, 2317.7477771803997, 2386.6704422782395, 2291.6704422782395, 2359.24168257024,
2474.2747930064797, 2661.07479300648, 2710.32217626078, 2769.6097738867797, 2766.31735093378,
2757.0742033427796, 2758.4562154963296, 2801.0297485817796, 2802.4021236478297, 2838.10212364783,
2838.51590008888, 2846.19142890988, 2848.8043321358796]

recheckC = len(columntempsC)*[0]

Q = Qh
for i in Hlen: #finds pinch by checking for zero value in cascade
 Q = Q + H[i]
 if -.01 < Q < .01:
 pinch = Tstar[i+1-count]

 for j in range(len(columntempsR)):
 if Tstar[i+1-count] == columntempsR[j][0]:
 if recheckR[j] == 0:
 count = count + 1
 recheckR[j] = 1
 else:
 recheckR[j] = 0
 for j in range(len(columntempsC)):
 if Tstar[i+1-count] == columntempsC[j][0]:
 if recheckC[j] == 0:
 count = count + 1
 recheckC[j] = 1
 else:
 recheckC[j] = 0

print(pinch) #pinch temperature

In [485]:
def HXColInt(T): #uses program from before, but have Tmin as an input, and spits out
 #Qh, Qc, and Tpinch for each value put in
 CP = [24.39565742, 24.41707317, 12.31428571, 5.225806452, 6.550724638, 0.6, 11.50300601,
 32.5872093, 1.176995096, 1.272727273, 0, 0, 0, 0, 0, 0] #input CP values (0 for columns)

 Ts = [35.5, 450, 40, 35.5, 104.5, 70, 129.9, 183.2, 249.3, 80, 35.5, 129.9, 104.5, 150.3,
 183.2, 249.3] #input temperatures at inlets

 Tt = [450, 40, 75, 20, 70, 35, 80, 80, 25, 25, 35.5, 129.9, 104.5, 150.3, 183.2, 249.3]
 #input temperatures at outlets

 Qcol = [0,0,0,0,0,0,0,0,0,0, 357, -950, 1868, -2865, 25527, -28320]
 #input 0 if not a column, -Qreb for reboiler, or Qcond for condenser

 Tmin = T #input Tmin

 o = list(range(len(CP))) #list of length of the number of streams
 Tss = list(range(len(Ts))) #list that will become shifted inlet temperatures
 Tts = list(range(len(Tt))) #list that will become shifted outlet temperatures

 coldnum = [] #list used to identify cold streams
 hotnum = [] #list used to identify hot streams
 disnumC = [] #list used to identify condensers
 disnumR = [] #list used to identify reboilers
 columntempsC = [] #used to identify where the condenders fit into the heat cascade
 columntempsR = [] #used to identify where the reboilers fit into the heat cascade

 for i in o: #function creating modified temps and identifying hot vs cold streams
 if Ts[i] > Tt[i]:
 Tss[i] = Ts[i]-(Tmin*.5)
 Tts[i] = Tt[i]-(Tmin*.5)
 hotnum.append(i)

 if Ts[i] < Tt[i]:
 Tss[i] = Ts[i]+(Tmin*.5)
 Tts[i] = Tt[i]+(Tmin*.5)
 coldnum.append(i)

 if Ts[i] == Tt[i]: #identifies columns/shifts temps
 if Qcol[i] > 0:
 Tss[i] = Ts[i]-(Tmin*.5)
 Tts[i] = Tt[i]-(Tmin*.5)
 disnumC.append(i)
 columntempsC.append([Tts[i], Qcol[i]])
 if Qcol[i] < 0:
 Tss[i] = Ts[i]+(Tmin*.5)

2848.8043321358796
259.3

CHE 273 Project • November 19, 2018

xv. Cost Analysis Code

52

recheckC = len(columntempsC)*[0]

Q = Qh
for i in Hlen: #finds pinch by checking for zero value in cascade
 Q = Q + H[i]
 if -.01 < Q < .01:
 pinch = Tstar[i+1-count]

 for j in range(len(columntempsR)):
 if Tstar[i+1-count] == columntempsR[j][0]:
 if recheckR[j] == 0:
 count = count + 1
 recheckR[j] = 1
 else:
 recheckR[j] = 0
 for j in range(len(columntempsC)):
 if Tstar[i+1-count] == columntempsC[j][0]:
 if recheckC[j] == 0:
 count = count + 1
 recheckC[j] = 1
 else:
 recheckC[j] = 0

print(pinch) #pinch temperature

In [485]:
def HXColInt(T): #uses program from before, but have Tmin as an input, and spits out
 #Qh, Qc, and Tpinch for each value put in
 CP = [24.39565742, 24.41707317, 12.31428571, 5.225806452, 6.550724638, 0.6, 11.50300601,
 32.5872093, 1.176995096, 1.272727273, 0, 0, 0, 0, 0, 0] #input CP values (0 for columns)

 Ts = [35.5, 450, 40, 35.5, 104.5, 70, 129.9, 183.2, 249.3, 80, 35.5, 129.9, 104.5, 150.3,
 183.2, 249.3] #input temperatures at inlets

 Tt = [450, 40, 75, 20, 70, 35, 80, 80, 25, 25, 35.5, 129.9, 104.5, 150.3, 183.2, 249.3]
 #input temperatures at outlets

 Qcol = [0,0,0,0,0,0,0,0,0,0, 357, -950, 1868, -2865, 25527, -28320]
 #input 0 if not a column, -Qreb for reboiler, or Qcond for condenser

 Tmin = T #input Tmin

 o = list(range(len(CP))) #list of length of the number of streams
 Tss = list(range(len(Ts))) #list that will become shifted inlet temperatures
 Tts = list(range(len(Tt))) #list that will become shifted outlet temperatures

 coldnum = [] #list used to identify cold streams
 hotnum = [] #list used to identify hot streams
 disnumC = [] #list used to identify condensers
 disnumR = [] #list used to identify reboilers
 columntempsC = [] #used to identify where the condenders fit into the heat cascade
 columntempsR = [] #used to identify where the reboilers fit into the heat cascade

 for i in o: #function creating modified temps and identifying hot vs cold streams
 if Ts[i] > Tt[i]:
 Tss[i] = Ts[i]-(Tmin*.5)
 Tts[i] = Tt[i]-(Tmin*.5)
 hotnum.append(i)

 if Ts[i] < Tt[i]:
 Tss[i] = Ts[i]+(Tmin*.5)
 Tts[i] = Tt[i]+(Tmin*.5)
 coldnum.append(i)

 if Ts[i] == Tt[i]: #identifies columns/shifts temps
 if Qcol[i] > 0:
 Tss[i] = Ts[i]-(Tmin*.5)
 Tts[i] = Tt[i]-(Tmin*.5)
 disnumC.append(i)
 columntempsC.append([Tts[i], Qcol[i]])
 if Qcol[i] < 0:
 Tss[i] = Ts[i]+(Tmin*.5)

2848.8043321358796
259.3

 Tss[i] = Ts[i]+(Tmin*.5)
 Tts[i] = Tt[i]+(Tmin*.5)
 disnumR.append(i)
 columntempsR.append([Tts[i], Qcol[i]])

 Tall = [] #list of all shifted temperatures
 for i in o:
 Tall.append(Tss[i])
 Tall.append(Tts[i])

 Tstar = list(set(Tall)) #list of all temperatures, without repeats, in descending order
 Tstar.sort(reverse=True) #***HEAT CASCADE TEMPS***

 CPtot = [] #will be list of net CPs for each temp interval
 lenT = list(range(len(Tstar) - 1)) #list for iterating through temperature intervals
 p=0
 lentempc = list(range(len(coldnum))) #iterates over cold streams
 lentemph = list(range(len(hotnum))) #iterates over hot streams

 #function to calculate net CPs
 for i in lenT: #iterate through temp intervals
 p=0
 for j in o: #iterate through streams
 for k in lentempc:
 if j == coldnum[k]: #if cold, checks if terget temp is in range
 if Tss[j] <Tstar[i] -.01 < Tts[j]:
 p = p-CP[j]
 for k in lentemph: #same for hot streams w/ target temp
 if j == hotnum[k]:
 if Tts[j] <Tstar[i] -.01 < Tss[j]:
 p = p+CP[j]
 CPtot.append(p)

 H = [] #list of delta H values for intervals
 Hval = list(range((len(Tstar) - 1))) #list to iterate through temperature intervals

 for i in Hval:
 H.append((Tstar[i]-Tstar[i+1])*(CPtot[i])) #calculates delta H

 count = 0
 for i in range(len(Tstar)): #adds in column values
 for j in range(len(columntempsR)):
 if Tstar[i] == columntempsR[j][0]:
 H.insert(count + i, columntempsR[j][1])
 count = count+1
 for j in range(len(columntempsC)):
 if Tstar[i] == columntempsC[j][0]:
 H.insert(count + i, columntempsC[j][1])
 count = count+1

 Hlen = list(range(len(H))) #list of delta H values for intervals

 Hsum = []
 n = 0
 for i in Hlen:
 n = n+H[i]
 Hsum.append(n)
 Qh = -min(Hsum) #Qh is -largest negative number when adding through H
 QH.append(Qh) #Adds Qh to list
 Hnewsum = list(range(len(Hsum))) #***HEAT CASCADE Hs***

 for i in Hlen:
 Hnewsum[i] = Hsum[i] + Qh

 Qc = sum(H)+Qh #Qc is ending value of cacade after adding Qc
 QC.append(Qc) #Adds Qc to list
 pinch = 0
 count = 0
 recheckR = len(columntempsR)*[0]
 recheckC = len(columntempsC)*[0]

 Q = Qh
 for i in Hlen: #finds pinch by checking for zero value in cascade
 Q = Q + H[i]
 if -.01 < Q < .01:
 pinch = Tstar[i+1-count]

 for j in range(len(columntempsR)):

 for j in range(len(columntempsR)):
 if Tstar[i+1-count] == columntempsR[j][0]:
 if recheckR[j] == 0:
 count = count + 1
 recheckR[j] = 1
 else:
 recheckR[j] = 0
 for j in range(len(columntempsC)):
 if Tstar[i+1-count] == columntempsC[j][0]:
 if recheckC[j] == 0:
 count = count + 1
 recheckC[j] = 1
 else:
 recheckC[j] = 0
 Tpinch.append(pinch) #adds Tpinch to list
 return

In [489]:
QH = [] #this code runs through Tmin values from 10 to 40 in intervals of .001 and the program
 #just above to get Qh, Qc, and Tpinch for each Tmin
QC = []
Tpinch = []

Tmins = list(range(30001))
for i in Tmins:
 Tmins[i] = Tmins[i]/1000
 Tmins[i] = Tmins[i]+10

for i in list(range(30001)): #takes a while to run due to number of iterations
 HXColInt(Tmins[i])

In [491]:
hrs = 300*24 #setting hrs equal to hours in a year
print(hrs)

In [492]:
cost = [] #calculating all three costs in terms of Tmin
Ccost = []
Tcost = []
for i in list(range(30001)):
 cost.append(QH[i]*hrs*.15)
 Ccost.append((12.5*10**6)/(Tmins[i]**.05))
 Tcost.append(cost[i]+Ccost[i])

In [493]:
import matplotlib.pyplot as plt #Graphing Tmin vs Capital cost
plt.plot(Tmins, Ccost)
plt.title('ΔT_{min} vs Capital Cost')
plt.xlabel('$\Delta T_{min} (^{\circ}C)$')
plt.ylabel('Capital Cost ($10,000,000)')
plt.show()

7200

In [494]:
import matplotlib.pyplot as plt #graphing Tmin vs operation costs
plt.plot(Tmins, cost)
plt.title('ΔT_{min} vs Operation Costs (1 year)')
plt.xlabel('$\Delta T_{min} (^{\circ}C)$')
plt.ylabel('Operation Costs ($10,000,000)')
plt.show()

In [495]:
import matplotlib.pyplot as plt #graphing Tmin vs total cost for 1 year
plt.plot(Tmins, Tcost)
plt.title('ΔT_{min} vs Total Cost (1 Year)')
plt.xlabel('$\Delta T_{min} (^{\circ}C)$')
plt.ylabel('Cost ($10,000,000)')
plt.show()

In [357]:
minimum = min(Tcost) #calculating minimum cost for 1 year, and the Tmin needed to achieve this
for i in list(range(30001)):
 if minimum == Tcost[i]:
 print(Tcost[i])
 print(Tmins[i])

In [471]:
hours = list(range(360*5)) #calculation of the number of days until the best Tmin value is 10
degrees
for i in hours:
 hours[i] = i*24
for i in range(len(hours)):

41869410.86540445
20.384

for i in range(len(hours)):
 num = (QH[0]*.15*hours[i]) + ((12.5*10**6)/(Tmins[0]**.05))
 num2 = (QH[1]*.15*hours[i]) + ((12.5*10**6)/(Tmins[1]**.05))
 if num<num2:
 days = i
 break

print(i)

In [496]:
hours = [] #calculating cost in terms of Tmin and time
for i in range(31):
 hours.append(i*7200)
cost = list(range(31))
Tcost = list(range(31))
for i in cost:
 cost[i] = list(range(len(hours)))
 Tcost[i] = list(range(len(hours)))
Ccost = []
for i in list(range(31)):
 for j in range(31):
 cost[i][j] = (QH[i]*hours[j]*.15)
 Ccost.append((12.5*10**6)/(Tmins[i]**.05))
 for j in range(31):
 Tcost[i][j] = (cost[i][j]+Ccost[i])

In [475]:
import numpy as np #using the relations between cost, Tmin, and time, makes a 3D plot to show
these relationships
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter

xthree1 = np.array(Tmins)
ythree1 = np.array(hours)
Qthree = np.array(QH)
xthree1, ythree1 = np.meshgrid(xthree1, ythree1)
zthree1 = ((12.5*10**6)/(xthree1)) + (Qthree*ythree1*.15)

fig1 = plt.figure() #here we create our 3d coordinate system
ax1 = fig1.gca(projection='3d')

three1 = ax1.plot_surface(-ythree1/7200, xthree1, zthree1, cmap='coolwarm', linewidth=0, antialiase
d = False) #creates our 3d plot as a surface plot.
fig1.colorbar(three1, shrink=0.5, aspect=5, label = 'Cost ($100,000,000)') #creates a bar to displa
y what z values each color cooresponds to
plt.xlabel('Time (Years)')
plt.ylabel('$\Delta T_{min} (^{\circ}C)$')
plt.title('Cost vs Time vs ΔT_{min}')
plt.show()

In [453]:
plt.plot(Tmins, QH) #Plots Tmin vs Qh
plt.title('ΔT_{min} vs Q_h')
plt.xlabel('$\Delta T_{min} (^{\circ}C)$')

634

plt.xlabel('$\Delta T_{min} (^{\circ}C)$')
plt.ylabel('$Q_h (kW)$')
plt.show()

In [360]:
import networkx as nx #don't use!
G = nx.Graph()

G.add_node('1', node_color= '#f20d0d')
G.add_node('2', node_color= '#f2690d')
G.add_node('3', node_color= '#f2ba0d')
G.add_node('4', node_color= '#d9f20d')
G.add_node('5a', node_color= '#5af20d')
G.add_node('5b', node_color= '#0df23f')
G.add_node('6', node_color= '#0df279')
G.add_node('7', node_color= '#0df2b3')
G.add_node('8', node_color= '#0df2ec')
G.add_node('9', node_color= '#0d79f2')
G.add_node('C1', node_color= '#0d28f2')
G.add_node('R1', node_color= '#2c0df2')
G.add_node('C2', node_color= '#710df2')
G.add_node('R2', node_color= '#d90df2')
G.add_node('C3', node_color= '#f20d98')
G.add_node('R3', node_color= '#f20d52')

G.add_edge('1', '2', weight=465.2252+521.58)
G.add_edge('2', 'R3', weight=.16726)
G.add_edge('3', '7', weight=43.1)
G.add_edge('7', 'R1', weight=74.654)
G.add_edge('7', 'R2', weight=66.504)
G.add_edge('8', 'R1', weight=10.4753)
G.add_edge('8', 'R2', weight=2.4)
G.add_edge('R1', 'C3', weight=26.1)
G.add_edge('R2', 'C3', weight=201.37)

color_map = []
for node in G:
 if node == '1':
 color_map.append('#f20d0d')
 if node == '2':
 color_map.append('#f2690d')
 if node == '3':
 color_map.append('#f2ba0d')
 if node == '4':
 color_map.append('#ecee0a')
 if node == '5a':
 color_map.append('#5af20d')
 if node == '5b':
 color_map.append('#0df23f')
 if node == '6':
 color_map.append('#0df279')
 if node == '7':
 color_map.append('#0df2b3')
 if node == '8':
 color_map.append('#0df2ec')
 if node == '9':
 color_map.append('#0d79f2')
 if node == 'C1':

CHE 273 Project • November 19, 2018

xvi. Eigenvector Centrality for Original Network Code

59

plt.xlabel('$\Delta T_{min} (^{\circ}C)$')
plt.ylabel('$Q_h (kW)$')
plt.show()

In [360]:
import networkx as nx #don't use!
G = nx.Graph()

G.add_node('1', node_color= '#f20d0d')
G.add_node('2', node_color= '#f2690d')
G.add_node('3', node_color= '#f2ba0d')
G.add_node('4', node_color= '#d9f20d')
G.add_node('5a', node_color= '#5af20d')
G.add_node('5b', node_color= '#0df23f')
G.add_node('6', node_color= '#0df279')
G.add_node('7', node_color= '#0df2b3')
G.add_node('8', node_color= '#0df2ec')
G.add_node('9', node_color= '#0d79f2')
G.add_node('C1', node_color= '#0d28f2')
G.add_node('R1', node_color= '#2c0df2')
G.add_node('C2', node_color= '#710df2')
G.add_node('R2', node_color= '#d90df2')
G.add_node('C3', node_color= '#f20d98')
G.add_node('R3', node_color= '#f20d52')

G.add_edge('1', '2', weight=465.2252+521.58)
G.add_edge('2', 'R3', weight=.16726)
G.add_edge('3', '7', weight=43.1)
G.add_edge('7', 'R1', weight=74.654)
G.add_edge('7', 'R2', weight=66.504)
G.add_edge('8', 'R1', weight=10.4753)
G.add_edge('8', 'R2', weight=2.4)
G.add_edge('R1', 'C3', weight=26.1)
G.add_edge('R2', 'C3', weight=201.37)

color_map = []
for node in G:
 if node == '1':
 color_map.append('#f20d0d')
 if node == '2':
 color_map.append('#f2690d')
 if node == '3':
 color_map.append('#f2ba0d')
 if node == '4':
 color_map.append('#ecee0a')
 if node == '5a':
 color_map.append('#5af20d')
 if node == '5b':
 color_map.append('#0df23f')
 if node == '6':
 color_map.append('#0df279')
 if node == '7':
 color_map.append('#0df2b3')
 if node == '8':
 color_map.append('#0df2ec')
 if node == '9':
 color_map.append('#0d79f2')
 if node == 'C1':

 if node == 'C1':
 color_map.append('#5e6fee')
 if node == 'R1':
 color_map.append('#635eee')
 if node == 'C2':
 color_map.append('#906aee')
 if node == 'R2':
 color_map.append('#d90df2')
 if node == 'C3':
 color_map.append('#f20d98')
 if node == 'R3':
 color_map.append('#f20d52')

import matplotlib.pyplot as plt
nx.draw_circular(G,node_color = color_map,with_labels = True, font_weight='bold')
plt.show()

EC = nx.eigenvector_centrality(G)
print(EC)

In [498]:
import networkx as nx #creates graph
G = nx.Graph()

G.add_node('1')
G.add_node('2')
G.add_node('3')
G.add_node('4')
G.add_node('5a')
G.add_node('5b')
G.add_node('6')
G.add_node('7')
G.add_node('8')
G.add_node('9')
G.add_node('C1')
G.add_node('R1')
G.add_node('C2')
G.add_node('R2')
G.add_node('C3')
G.add_node('R3')

G.add_edge('1', '2', weight=465.2252+521.58) #creates edges and edge weights
G.add_edge('2', 'R3', weight=.16726)
G.add_edge('3', '7', weight=43.1)
G.add_edge('7', 'R1', weight=74.654)
G.add_edge('7', 'R2', weight=66.504)
G.add_edge('8', 'R1', weight=10.4753)
G.add_edge('8', 'R2', weight=2.4)
G.add_edge('R1', 'C3', weight=26.1)

{'1': 9.046110461023596e-06, '2': 1.27931321007047e-05, '3': 0.18000813939677104, '4':
2.030074636709603e-16, '5a': 2.030074636709603e-16, '5b': 2.030074636709603e-16, '6':
2.030074636709603e-16, '7': 0.45440134941833504, '8': 0.38309229533177, '9': 2.030074636709603e-16
, 'C1': 2.030074636709603e-16, 'R1': 0.483527181027733, 'C2': 2.030074636709603e-16, 'R2':
0.483527181027733, 'C3': 0.38309229533177, 'R3': 9.046110461023596e-06}

G.add_edge('R1', 'C3', weight=26.1)
G.add_edge('R2', 'C3', weight=201.37)

color_map = [] #colors the nodes
for node in G:
 if node == '1':
 color_map.append('#05dfff')
 if node == '2':
 color_map.append('#e13622')
 if node == '3':
 color_map.append('#05dfff')
 if node == '4':
 color_map.append('#e13622')
 if node == '5a':
 color_map.append('#e13622')
 if node == '5b':
 color_map.append('#e13622')
 if node == '6':
 color_map.append('#e13622')
 if node == '7':
 color_map.append('#e13622')
 if node == '8':
 color_map.append('#e13622')
 if node == '9':
 color_map.append('#e13622')
 if node == 'C1':
 color_map.append('#fd0000')
 if node == 'R1':
 color_map.append('#0998f0')
 if node == 'C2':
 color_map.append('#fd0000')
 if node == 'R2':
 color_map.append('#0998f0')
 if node == 'C3':
 color_map.append('#fd0000')
 if node == 'R3':
 color_map.append('#0998f0')

nx.draw_circular(G,node_color = color_map,with_labels = True, font_weight='bold') #draws our graph
plt.show()

EC = nx.eigenvector_centrality(G) #prints unweighted centralities
print(EC)
print()

ECW = nx.eigenvector_centrality(G, max_iter=100, tol=1e-04, weight = 'weight') #prints weighted cen
tralities
print(ECW)

{'1': 9.046110461023596e-06, '2': 1.27931321007047e-05, '3': 0.18000813939677104, '4':
2.030074636709603e-16, '5a': 2.030074636709603e-16, '5b': 2.030074636709603e-16, '6':
2.030074636709603e-16, '7': 0.45440134941833504, '8': 0.38309229533177, '9': 2.030074636709603e-16
, 'C1': 2.030074636709603e-16, 'R1': 0.483527181027733, 'C2': 2.030074636709603e-16, 'R2':
0.483527181027733, 'C3': 0.38309229533177, 'R3': 9.046110461023596e-06}

{'1': 0.7071659513667207, '2': 0.707047578120793, '3': 8.609888467230922e-06, '4':
7.610624739699129e-19, '5a': 7.610624739699129e-19, '5b': 7.610624739699129e-19, '6':

In [362]:
print(['%s %0.4f'%(node,EC[node]) for node in EC]) #Prints centrality and weighted centrality to 4
decimal places
print()
print(['%s %0.4f'%(node,ECW[node]) for node in ECW])

In [257]:
color_map = [] #not used!
for node in G:
 if node == '1':
 color_map.append('#75edff')
 if node == '2':
 color_map.append('#ff0000')
 if node == '3':
 color_map.append('#79eeff')
 if node == '4':
 color_map.append('#ff5858')
 if node == '5a':
 color_map.append('#ff4040')
 if node == '5b':
 color_map.append('#ff4e4e')
 if node == '6':
 color_map.append('#ff3939')
 if node == '7':
 color_map.append('#ff3e3e')
 if node == '8':
 color_map.append('#ff3c3c')
 if node == '9':
 color_map.append('#ff0a0a')
 if node == 'C1':
 color_map.append('#ff5555')
 if node == 'R1':
 color_map.append('#00dfff')
 if node == 'C2':
 color_map.append('#ff4d4d')
 if node == 'R2':
 color_map.append('#4fe6ff')
 if node == 'C3':
 color_map.append('#ff2121')
 if node == 'R3':
 color_map.append('#3ee5ff')

nx.draw_circular(G,node_color = color_map,with_labels = True, font_weight='bold')
plt.show()

7.610624739699129e-19, '5a': 7.610624739699129e-19, '5b': 7.610624739699129e-19, '6':
7.610624739699129e-19, '7': 4.4838164426463e-05, '8': 2.554859928484192e-06, '9':
7.610624739699129e-19, 'C1': 7.610624739699129e-19, 'R1': 2.7112364662527182e-05, 'C2':
7.610624739699129e-19, 'R2': 0.00010650607344006016, 'C3': 0.00010471126102060963, 'R3': 0.00011986
213391011565}

['1 0.0000', '2 0.0000', '3 0.1800', '4 0.0000', '5a 0.0000', '5b 0.0000', '6 0.0000', '7 0.4544',
'8 0.3831', '9 0.0000', 'C1 0.0000', 'R1 0.4835', 'C2 0.0000', 'R2 0.4835', 'C3 0.3831', 'R3 0.000
0']

['1 0.7072', '2 0.7070', '3 0.0000', '4 0.0000', '5a 0.0000', '5b 0.0000', '6 0.0000', '7 0.0000',
'8 0.0000', '9 0.0000', 'C1 0.0000', 'R1 0.0000', 'C2 0.0000', 'R2 0.0001', 'C3 0.0001', 'R3 0.000
1']

CHE 273 Project • November 19, 2018

xvii. Pinch Calculations for Steam Raising Code

64

In [499]:
#STEAM RAISING NETWORK
#Very similar to earlier code, but not with 2 more streams and a
#"reboiler" which is our vaporization stream
CP = [2.439565742, 2.441707317, 1.231428571, 0.5225806452, 0.6550724638, 0.06, 1.150300601,
 3.25872093, 0.1176995096, 0.1272727273, 0, 0, 0, 0, 0, 0, 4.184*1.064965, 1.996*1.064965,
 ((4.184+1.996)/2)*1.064965] #input CP values (0 for columns)

Ts = [35.5, 450, 40, 35.5, 104.5, 70, 129.9, 183.2, 249.3, 80, 35.5, 129.9, 104.5, 150.3,
 183.2, 249.3, 25, 100, 100] #input temperatures at inlets

Tt = [450, 40, 75, 20, 70, 35, 80, 80, 25, 25, 35.5, 129.9, 104.5, 150.3, 183.2, 249.3,
 100, 120, 100] #input temperatures at outlets

Qcol = [0,0,0,0,0,0,0,0,0,0, 35.7, -95, 186.8, -286.5, 2552.7, -2832, 0, 0, -2257*1.064965]
 #input 0 if not a column, -Qreb for reboiler, or Qcond for condenser

Tmin = 10 #input Tmin

o = list(range(len(CP))) #list of length of the number of streams
Tss = list(range(len(Ts))) #list that will become shifted inlet temperatures
Tts = list(range(len(Tt))) #list that will become shifted outlet temperatures

coldnum = [] #list used to identify cold streams
hotnum = [] #list used to identify hot streams
disnumC = [] #list used to identify condensers
disnumR = [] #list used to identify reboilers
columntempsC = [] #used to identify where the condenders fit into the heat cascade
columntempsR = [] #used to identify where the reboilers fit into the heat cascade

for i in o: #function creating modified temps and identifying hot vs cold streams
 if Ts[i] > Tt[i]:
 Tss[i] = Ts[i]-(Tmin*.5)
 Tts[i] = Tt[i]-(Tmin*.5)
 hotnum.append(i)

 if Ts[i] < Tt[i]:
 Tss[i] = Ts[i]+(Tmin*.5)
 Tts[i] = Tt[i]+(Tmin*.5)
 coldnum.append(i)

 if Ts[i] == Tt[i]: #identifies columns/shifts temps
 if Qcol[i] > 0:
 Tss[i] = Ts[i]-(Tmin*.5)
 Tts[i] = Tt[i]-(Tmin*.5)
 disnumC.append(i)
 columntempsC.append([Tts[i], Qcol[i]])
 if Qcol[i] < 0:
 Tss[i] = Ts[i]+(Tmin*.5)
 Tts[i] = Tt[i]+(Tmin*.5)
 disnumR.append(i)
 columntempsR.append([Tts[i], Qcol[i]])

In [500]:
Tall = [] #list of all shifted temperatures
for i in o:
 Tall.append(Tss[i])
 Tall.append(Tts[i])

Tstar = list(set(Tall)) #list of all temperatures, without repeats, in descending order
Tstar.sort(reverse=True) #***HEAT CASCADE TEMPS***
print(Tstar)
print()

CPtot = [] #will be list of net CPs for each temp interval
lenT = list(range(len(Tstar) - 1)) #list for iterating through temperature intervals
p=0

p=0
lentempc = list(range(len(coldnum))) #iterates over cold streams
lentemph = list(range(len(hotnum))) #iterates over hot streams

#function to calculate net CPs
for i in lenT: #iterate through temp intervals
 p=0
 for j in o: #iterate through streams
 for k in lentempc:
 if j == coldnum[k]: #if cold, increase temp in integer increments to see
 #if it's in the selected temp range
 x = Tss[j]
 while Tts[j] >= x:
 if -.005 +x <Tstar[i] -.1 < x +.005: #WILL FAIL IF TEMPS ARE NOT INTEGERS
 p = p-CP[j]
 x = x+.1
 for k in lentemph: #same for hot streams, but decreasing temp
 if j == hotnum[k]:
 x = Tss[j]
 while Tts[j] <= x:
 if -.005 + x<Tstar[i] -.1 <x+.005:
 p = p+CP[j]
 x = x-.1
 CPtot.append(p)
print(CPtot)

In [501]:
H = [] #list of delta H values for intervals
Hval = list(range((len(Tstar) - 1))) #list to iterate through temperature intervals

for i in Hval:
 H.append((Tstar[i]-Tstar[i+1])*(CPtot[i])) #calculates delta H

print(H) #before column integration

count = 0
for i in range(len(Tstar)): #adds in column values
 for j in range(len(columntempsR)):
 if Tstar[i] == columntempsR[j][0]:
 H.insert(count + i, columntempsR[j][1])
 count = count+1
 for j in range(len(columntempsC)):
 if Tstar[i] == columntempsC[j][0]:
 H.insert(count + i, columntempsC[j][1])
 count = count+1
print()
print(H) #after column integration

In [502]:
Hlen = list(range(len(H))) #list of delta H values for intervals

Hsum = []
n = 0
for i in Hlen:

[455.0, 445.0, 254.3, 244.3, 178.2, 155.3, 134.9, 125.0, 124.9, 105.0, 99.5, 80.0, 75.0, 65.0, 45.
0, 40.5, 35.0, 30.5, 30.0, 20.0, 15.0]

[-2.439565742, 0.0021415750000000067, 0.0021415750000000067, 0.11984108460000001, 3.3785620146, 3.
3785620146, 3.3785620146, 2.4031924756000005, 2.4031924756000005, 0.0730490556000003,
0.7281215194000001, -0.5033070516000002, -4.7850558553, -5.3801283191, -4.1486997481, -
1.7091340061000002, -4.1508413231, -3.6282606779, 0.7675528821, 0.5225806452]

[-24.39565742, 0.4083983525000012, 0.021415750000000067, 7.921495692060003, 77.36907013433992, 68.
92266509784002, 33.44776394454002, 0.24031924755998638, 47.82353026444002, 0.40176980580000166,
14.198369628300004, -2.516535258000001, -47.850558553000006, -107.60256638199999, -18.66914886645,
-9.40023703355, -18.678785953949998, -1.81413033895, 7.6755288209999994, 2.6129032260000002]

[-24.39565742, 0.4083983525000012, -2832, 0.021415750000000067, 7.921495692060003, 2552.7,
77.36907013433992, -286.5, 68.92266509784002, -95, 33.44776394454002, 0.24031924755998638,
47.82353026444002, -2403.626005, 0.40176980580000166, 186.8, 14.198369628300004, -
2.516535258000001, -47.850558553000006, -107.60256638199999, -18.66914886645, -9.40023703355, -18.
678785953949998, 35.7, -1.81413033895, 7.6755288209999994, 2.6129032260000002]

for i in Hlen:
 n = n+H[i]
 Hsum.append(n)
Qh = -min(Hsum) #Qh is -largest negative number when adding through H

print(Qh)

Hnewsum = list(range(len(Hsum))) #***HEAT CASCADE Hs***

for i in Hlen:
 Hnewsum[i] = Hsum[i] + Qh
print()
print(Hnewsum)

In [503]:
Qc = sum(H)+Qh #Qc is ending value of cacade after adding Qc
print(Qc)

pinch = 0
count = 0
recheckR = len(columntempsR)*[0]
recheckC = len(columntempsC)*[0]

Q = Qh
for i in Hlen: #finds pinch by checking for zero value in cascade
 Q = Q + H[i]
 if -.01 < Q < .01:
 pinch = Tstar[i+1-count]
 print(pinch)

 for j in range(len(columntempsR)):
 if Tstar[i+1-count] == columntempsR[j][0]:
 if recheckR[j] == 0:
 count = count + 1
 recheckR[j] = 1
 else:
 recheckR[j] = 0
 for j in range(len(columntempsC)):
 if Tstar[i+1-count] == columntempsC[j][0]:
 if recheckC[j] == 0:
 count = count + 1
 recheckC[j] = 1
 else:
 recheckC[j] = 0

#note that two pinches are printed. In the readout of the code above this, heat cascade values are
displayed,
#and the point at which the cascade is at ~3.32 kW is also a pinch, even if it is not reflected ex
actly through
#the code.

In [507]:
import networkx as nx #same graph procedure as above but for the steam raising network
G = nx.Graph()

G.add_node('1', node_color= '#f20d0d')
G.add_node('2', node_color= '#f2690d')
G.add_node('3', node_color= '#f2ba0d')
G.add_node('4', node_color= '#d9f20d')
G.add_node('5a', node_color= '#5af20d')

2855.9872590675

[2831.5916016475, 2832.0, 0.0, 0.0214157499999601, 7.942911442059994, 2560.64291144206,
2638.0119815763996, 2351.5119815763996, 2420.43464667424, 2325.43464667424, 2358.88241061878,
2359.12272986634, 2406.9462601307796, 3.3202551307795147, 3.7220249365796008, 190.52202493657978,
204.72039456487983, 202.20385930687962, 154.35330075387947, 46.75073437187939, 28.081585505429302,
18.68134847187912, 0.0025625179291637323, 35.70256251792898, 33.8884321789792, 41.56396099997937,
44.17686422597944]

44.17686422597944
254.3
45.0

CHE 273 Project • November 19, 2018

xviii. Eigenvector Centrality for Steam Raising Network Code

68

for i in Hlen:
 n = n+H[i]
 Hsum.append(n)
Qh = -min(Hsum) #Qh is -largest negative number when adding through H

print(Qh)

Hnewsum = list(range(len(Hsum))) #***HEAT CASCADE Hs***

for i in Hlen:
 Hnewsum[i] = Hsum[i] + Qh
print()
print(Hnewsum)

In [503]:
Qc = sum(H)+Qh #Qc is ending value of cacade after adding Qc
print(Qc)

pinch = 0
count = 0
recheckR = len(columntempsR)*[0]
recheckC = len(columntempsC)*[0]

Q = Qh
for i in Hlen: #finds pinch by checking for zero value in cascade
 Q = Q + H[i]
 if -.01 < Q < .01:
 pinch = Tstar[i+1-count]
 print(pinch)

 for j in range(len(columntempsR)):
 if Tstar[i+1-count] == columntempsR[j][0]:
 if recheckR[j] == 0:
 count = count + 1
 recheckR[j] = 1
 else:
 recheckR[j] = 0
 for j in range(len(columntempsC)):
 if Tstar[i+1-count] == columntempsC[j][0]:
 if recheckC[j] == 0:
 count = count + 1
 recheckC[j] = 1
 else:
 recheckC[j] = 0

#note that two pinches are printed. In the readout of the code above this, heat cascade values are
displayed,
#and the point at which the cascade is at ~3.32 kW is also a pinch, even if it is not reflected ex
actly through
#the code.

In [507]:
import networkx as nx #same graph procedure as above but for the steam raising network
G = nx.Graph()

G.add_node('1', node_color= '#f20d0d')
G.add_node('2', node_color= '#f2690d')
G.add_node('3', node_color= '#f2ba0d')
G.add_node('4', node_color= '#d9f20d')
G.add_node('5a', node_color= '#5af20d')

2855.9872590675

[2831.5916016475, 2832.0, 0.0, 0.0214157499999601, 7.942911442059994, 2560.64291144206,
2638.0119815763996, 2351.5119815763996, 2420.43464667424, 2325.43464667424, 2358.88241061878,
2359.12272986634, 2406.9462601307796, 3.3202551307795147, 3.7220249365796008, 190.52202493657978,
204.72039456487983, 202.20385930687962, 154.35330075387947, 46.75073437187939, 28.081585505429302,
18.68134847187912, 0.0025625179291637323, 35.70256251792898, 33.8884321789792, 41.56396099997937,
44.17686422597944]

44.17686422597944
254.3
45.0

G.add_node('5a', node_color= '#5af20d')
G.add_node('5b', node_color= '#0df23f')
G.add_node('6', node_color= '#0df279')
G.add_node('7', node_color= '#0df2b3')
G.add_node('8', node_color= '#0df2ec')
G.add_node('9', node_color= '#0d79f2')
G.add_node('C1', node_color= '#0d28f2')
G.add_node('R1', node_color= '#2c0df2')
G.add_node('C2', node_color= '#710df2')
G.add_node('R2', node_color= '#d90df2')
G.add_node('C3', node_color= '#f20d98')
G.add_node('R3', node_color= '#f20d52')
G.add_node('W', node_color= '#f20d52')
G.add_node('V', node_color= '#f20d52')
G.add_node('S', node_color= '#f20d52')

G.add_edge('1', '2', weight = 465.2252 + 10.978 + 510.6)
G.add_edge('2', 'R3', weight = .16726)
G.add_edge('W', '4', weight = .2763)
G.add_edge('W', '8', weight = 1.7582 + 7.062)
G.add_edge('W', '5b', weight = .847 + 1.2)
G.add_edge('W', '9', weight = 1.9012 + 3.8182)
G.add_edge('W', '2', weight = 13.439)
G.add_edge('W', 'C2', weight = 48.5793 + 118.54)
G.add_edge('2', '3', weight = .448)
G.add_edge('3', '7', weight = 42.65177)
G.add_edge('S', '7', weight = 42.51344)
G.add_edge('W', '7', weight = 55.11)
G.add_edge('W', '5a', weight = 22.6)
G.add_edge('W', '6', weight = 34.509)
G.add_edge('V', '6', weight = 22.891)
G.add_edge('V', '7', weight = 196.0251)
G.add_edge('V', '8', weight = 16.3955)
G.add_edge('C3', 'R1',weight = 95)
G.add_edge('C3', 'R2',weight = 286.5)
G.add_edge('C3', 'V', weight = 2168.316666666666666666666666)
G.add_edge('W', 'C3', weight = 2.883)

color_map = []
for node in G:
 if node == '1':
 color_map.append('#05dfff')
 if node == '2':
 color_map.append('#e13622')
 if node == '3':
 color_map.append('#05dfff')
 if node == '4':
 color_map.append('#e13622')
 if node == '5a':
 color_map.append('#e13622')
 if node == '5b':
 color_map.append('#e13622')
 if node == '6':
 color_map.append('#e13622')
 if node == '7':
 color_map.append('#e13622')
 if node == '8':
 color_map.append('#e13622')
 if node == '9':
 color_map.append('#e13622')
 if node == 'C1':
 color_map.append('#fd0000')
 if node == 'R1':
 color_map.append('#0998f0')
 if node == 'C2':
 color_map.append('#fd0000')
 if node == 'R2':
 color_map.append('#0998f0')
 if node == 'C3':
 color_map.append('#fd0000')
 if node == 'R3':
 color_map.append('#0998f0')
 if node == 'W':
 color_map.append('#00b8ff')
 if node == 'S':
 color_map.append('#90c4d8')

 color_map.append('#90c4d8')
 if node == 'V':
 color_map.append('#d2d2d2')

import matplotlib.pyplot as plt
nx.draw_circular(G,node_color = color_map,with_labels = True, font_weight='bold')
plt.show()

EC = nx.eigenvector_centrality(G)
print(EC)
print()
ECW = nx.eigenvector_centrality(G, max_iter=100, tol=1e-02, weight = 'weight')
print(ECW)

In [506]:
print(['%s %0.4f'%(node,EC[node]) for node in EC])
print()
print(['%s %0.4f'%(node,ECW[node]) for node in ECW])

{'1': 0.06698449238761839, '2': 0.24325102068509669, '3': 0.15333991736577712, '4':
0.1641343596669508, '5a': 0.1641343596669508, '5b': 0.1641343596669508, '6': 0.24759309681177238,
'7': 0.3135979384319429, '8': 0.24759309681177238, '9': 0.1641343596669508, 'C1':
2.909283080721106e-15, 'R1': 0.08036737752710574, 'C2': 0.1641343596669508, 'R2':
0.08036737752710574, 'C3': 0.2918539561092076, 'R3': 0.06698449238761839, 'W': 0.5960543690891199,
'V': 0.30308174340111277, 'S': 0.08635542497816165}

{'1': 0.025685992371378627, '2': 0.025436759991558335, '3': 0.0012645215193602972, '4':
4.947086731948657e-07, '5a': 4.046476808163789e-05, '5b': 3.6651053455444326e-06, '6':
0.0071313984601447805, '7': 0.06068672449786642, '8': 0.005079345968489468, '9':
1.0240451106845926e-05, 'C1': 2.6574779989223003e-14, 'R1': 0.0313112901962263, 'C2':
0.00029922317312500434, 'R2': 0.09442825938119732, 'C3': 0.6825299132706437, 'R3':
4.353693938423002e-06, 'W': 0.0031145665844965016, 'V': 0.7205390620858562, 'S':
0.0012487969752413418}

['1 0.0670', '2 0.2433', '3 0.1533', '4 0.1641', '5a 0.1641', '5b 0.1641', '6 0.2476', '7 0.3136',
'8 0.2476', '9 0.1641', 'C1 0.0000', 'R1 0.0804', 'C2 0.1641', 'R2 0.0804', 'C3 0.2919', 'R3 0.067
0', 'W 0.5961', 'V 0.3031', 'S 0.0864']

['1 0.0257', '2 0.0254', '3 0.0013', '4 0.0000', '5a 0.0000', '5b 0.0000', '6 0.0071', '7 0.0607',
'8 0.0051', '9 0.0000', 'C1 0.0000', 'R1 0.0313', 'C2 0.0003', 'R2 0.0944', 'C3 0.6825', 'R3 0.000
0', 'W 0.0031', 'V 0.7205', 'S 0.0012']

	Introduction
	Energy Analysis
	Environmental Analysis
	Steam Raising
	Integrating Steam Raising into the Heat Exchange Network

	Carnot Cycle
	Carnot Cycle Construction
	Numerical and Analytical Analysis
	Carnot Engine Specifications
	Supercritical Working Fluid Comparison
	Supercritical Working Fluid Integrations

	Eigenvector Centrality
	Original Network
	Steam Raising Network
	Heat Exchanger Energy/Area Analysis
	Original Network
	Steam Raising Network

	Conclusion
	Bibliography
	Appendix
	Original Network Flowsheet
	Network Flowsheet with Carnot Engine Integrate
	Steam Raised Network Flowsheet
	Supercritical Water Carnot Cycle
	Supercritical Methane Carnot Cycle
	Supercritical Ethane Carnot Cycle
	Steam Raising Code
	Table of Steam Raising Variables
	Supercritical CO2 Carnot Cycle Code
	Supercritical Methane Carnot Cycle Code
	Supercritical Ethane Carnot Cycle Code
	Supercritical Water Carnot Cycle Code
	Pinch Calculations at Tmin of 10 degrees C Code
	Pinch Calculations at Tmin of 20 degrees C Code
	Cost Analysis Code
	Eigenvector Centrality for Original Network Code
	Pinch Calculations for Steam Raising Code
	Eigenvector Centrality for Steam Raising Network Code

